Metamath Proof Explorer


Theorem cvmopnlem

Description: Lemma for cvmopn . (Contributed by Mario Carneiro, 7-May-2015)

Ref Expression
Hypotheses cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmseu.1 B = C
Assertion cvmopnlem F C CovMap J A C F A J

Proof

Step Hyp Ref Expression
1 cvmcov.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmseu.1 B = C
3 simpll F C CovMap J A C z A F C CovMap J
4 cvmcn F C CovMap J F C Cn J
5 4 adantr F C CovMap J A C F C Cn J
6 eqid J = J
7 2 6 cnf F C Cn J F : B J
8 5 7 syl F C CovMap J A C F : B J
9 8 adantr F C CovMap J A C z A F : B J
10 elssuni A C A C
11 10 2 sseqtrrdi A C A B
12 11 adantl F C CovMap J A C A B
13 12 sselda F C CovMap J A C z A z B
14 9 13 ffvelrnd F C CovMap J A C z A F z J
15 1 6 cvmcov F C CovMap J F z J t J F z t S t
16 3 14 15 syl2anc F C CovMap J A C z A t J F z t S t
17 n0 S t w w S t
18 inss2 A ι x w | z x ι x w | z x
19 resima2 A ι x w | z x ι x w | z x F ι x w | z x A ι x w | z x = F A ι x w | z x
20 18 19 ax-mp F ι x w | z x A ι x w | z x = F A ι x w | z x
21 simprr F C CovMap J A C z A F z t w S t w S t
22 3 adantr F C CovMap J A C z A F z t w S t F C CovMap J
23 13 adantr F C CovMap J A C z A F z t w S t z B
24 simprl F C CovMap J A C z A F z t w S t F z t
25 eqid ι x w | z x = ι x w | z x
26 1 2 25 cvmsiota F C CovMap J w S t z B F z t ι x w | z x w z ι x w | z x
27 22 21 23 24 26 syl13anc F C CovMap J A C z A F z t w S t ι x w | z x w z ι x w | z x
28 27 simpld F C CovMap J A C z A F z t w S t ι x w | z x w
29 1 cvmshmeo w S t ι x w | z x w F ι x w | z x C 𝑡 ι x w | z x Homeo J 𝑡 t
30 21 28 29 syl2anc F C CovMap J A C z A F z t w S t F ι x w | z x C 𝑡 ι x w | z x Homeo J 𝑡 t
31 cvmtop1 F C CovMap J C Top
32 22 31 syl F C CovMap J A C z A F z t w S t C Top
33 simpllr F C CovMap J A C z A F z t w S t A C
34 elrestr C Top ι x w | z x w A C A ι x w | z x C 𝑡 ι x w | z x
35 32 28 33 34 syl3anc F C CovMap J A C z A F z t w S t A ι x w | z x C 𝑡 ι x w | z x
36 hmeoima F ι x w | z x C 𝑡 ι x w | z x Homeo J 𝑡 t A ι x w | z x C 𝑡 ι x w | z x F ι x w | z x A ι x w | z x J 𝑡 t
37 30 35 36 syl2anc F C CovMap J A C z A F z t w S t F ι x w | z x A ι x w | z x J 𝑡 t
38 20 37 eqeltrrid F C CovMap J A C z A F z t w S t F A ι x w | z x J 𝑡 t
39 cvmtop2 F C CovMap J J Top
40 39 adantr F C CovMap J A C J Top
41 40 ad2antrr F C CovMap J A C z A F z t w S t J Top
42 1 cvmsrcl w S t t J
43 42 ad2antll F C CovMap J A C z A F z t w S t t J
44 restopn2 J Top t J F A ι x w | z x J 𝑡 t F A ι x w | z x J F A ι x w | z x t
45 41 43 44 syl2anc F C CovMap J A C z A F z t w S t F A ι x w | z x J 𝑡 t F A ι x w | z x J F A ι x w | z x t
46 38 45 mpbid F C CovMap J A C z A F z t w S t F A ι x w | z x J F A ι x w | z x t
47 46 simpld F C CovMap J A C z A F z t w S t F A ι x w | z x J
48 8 ffnd F C CovMap J A C F Fn B
49 48 ad2antrr F C CovMap J A C z A F z t w S t F Fn B
50 inss1 A ι x w | z x A
51 33 11 syl F C CovMap J A C z A F z t w S t A B
52 50 51 sstrid F C CovMap J A C z A F z t w S t A ι x w | z x B
53 simplr F C CovMap J A C z A F z t w S t z A
54 27 simprd F C CovMap J A C z A F z t w S t z ι x w | z x
55 53 54 elind F C CovMap J A C z A F z t w S t z A ι x w | z x
56 fnfvima F Fn B A ι x w | z x B z A ι x w | z x F z F A ι x w | z x
57 49 52 55 56 syl3anc F C CovMap J A C z A F z t w S t F z F A ι x w | z x
58 imass2 A ι x w | z x A F A ι x w | z x F A
59 50 58 mp1i F C CovMap J A C z A F z t w S t F A ι x w | z x F A
60 eleq2 y = F A ι x w | z x F z y F z F A ι x w | z x
61 sseq1 y = F A ι x w | z x y F A F A ι x w | z x F A
62 60 61 anbi12d y = F A ι x w | z x F z y y F A F z F A ι x w | z x F A ι x w | z x F A
63 62 rspcev F A ι x w | z x J F z F A ι x w | z x F A ι x w | z x F A y J F z y y F A
64 47 57 59 63 syl12anc F C CovMap J A C z A F z t w S t y J F z y y F A
65 64 expr F C CovMap J A C z A F z t w S t y J F z y y F A
66 65 exlimdv F C CovMap J A C z A F z t w w S t y J F z y y F A
67 17 66 syl5bi F C CovMap J A C z A F z t S t y J F z y y F A
68 67 expimpd F C CovMap J A C z A F z t S t y J F z y y F A
69 68 rexlimdvw F C CovMap J A C z A t J F z t S t y J F z y y F A
70 16 69 mpd F C CovMap J A C z A y J F z y y F A
71 70 ralrimiva F C CovMap J A C z A y J F z y y F A
72 eleq1 x = F z x y F z y
73 72 anbi1d x = F z x y y F A F z y y F A
74 73 rexbidv x = F z y J x y y F A y J F z y y F A
75 74 ralima F Fn B A B x F A y J x y y F A z A y J F z y y F A
76 48 12 75 syl2anc F C CovMap J A C x F A y J x y y F A z A y J F z y y F A
77 71 76 mpbird F C CovMap J A C x F A y J x y y F A
78 eltop2 J Top F A J x F A y J x y y F A
79 40 78 syl F C CovMap J A C F A J x F A y J x y y F A
80 77 79 mpbird F C CovMap J A C F A J