| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmcov.1 |
|
| 2 |
|
cvmseu.1 |
|
| 3 |
|
simpll |
|
| 4 |
|
cvmcn |
|
| 5 |
4
|
adantr |
|
| 6 |
|
eqid |
|
| 7 |
2 6
|
cnf |
|
| 8 |
5 7
|
syl |
|
| 9 |
8
|
adantr |
|
| 10 |
|
elssuni |
|
| 11 |
10 2
|
sseqtrrdi |
|
| 12 |
11
|
adantl |
|
| 13 |
12
|
sselda |
|
| 14 |
9 13
|
ffvelcdmd |
|
| 15 |
1 6
|
cvmcov |
|
| 16 |
3 14 15
|
syl2anc |
|
| 17 |
|
n0 |
|
| 18 |
|
inss2 |
|
| 19 |
|
resima2 |
|
| 20 |
18 19
|
ax-mp |
|
| 21 |
|
simprr |
|
| 22 |
3
|
adantr |
|
| 23 |
13
|
adantr |
|
| 24 |
|
simprl |
|
| 25 |
|
eqid |
|
| 26 |
1 2 25
|
cvmsiota |
|
| 27 |
22 21 23 24 26
|
syl13anc |
|
| 28 |
27
|
simpld |
|
| 29 |
1
|
cvmshmeo |
|
| 30 |
21 28 29
|
syl2anc |
|
| 31 |
|
cvmtop1 |
|
| 32 |
22 31
|
syl |
|
| 33 |
|
simpllr |
|
| 34 |
|
elrestr |
|
| 35 |
32 28 33 34
|
syl3anc |
|
| 36 |
|
hmeoima |
|
| 37 |
30 35 36
|
syl2anc |
|
| 38 |
20 37
|
eqeltrrid |
|
| 39 |
|
cvmtop2 |
|
| 40 |
39
|
adantr |
|
| 41 |
40
|
ad2antrr |
|
| 42 |
1
|
cvmsrcl |
|
| 43 |
42
|
ad2antll |
|
| 44 |
|
restopn2 |
|
| 45 |
41 43 44
|
syl2anc |
|
| 46 |
38 45
|
mpbid |
|
| 47 |
46
|
simpld |
|
| 48 |
8
|
ffnd |
|
| 49 |
48
|
ad2antrr |
|
| 50 |
|
inss1 |
|
| 51 |
33 11
|
syl |
|
| 52 |
50 51
|
sstrid |
|
| 53 |
|
simplr |
|
| 54 |
27
|
simprd |
|
| 55 |
53 54
|
elind |
|
| 56 |
|
fnfvima |
|
| 57 |
49 52 55 56
|
syl3anc |
|
| 58 |
|
imass2 |
|
| 59 |
50 58
|
mp1i |
|
| 60 |
|
eleq2 |
|
| 61 |
|
sseq1 |
|
| 62 |
60 61
|
anbi12d |
|
| 63 |
62
|
rspcev |
|
| 64 |
47 57 59 63
|
syl12anc |
|
| 65 |
64
|
expr |
|
| 66 |
65
|
exlimdv |
|
| 67 |
17 66
|
biimtrid |
|
| 68 |
67
|
expimpd |
|
| 69 |
68
|
rexlimdvw |
|
| 70 |
16 69
|
mpd |
|
| 71 |
70
|
ralrimiva |
|
| 72 |
|
eleq1 |
|
| 73 |
72
|
anbi1d |
|
| 74 |
73
|
rexbidv |
|
| 75 |
74
|
ralima |
|
| 76 |
48 12 75
|
syl2anc |
|
| 77 |
71 76
|
mpbird |
|
| 78 |
|
eltop2 |
|
| 79 |
40 78
|
syl |
|
| 80 |
77 79
|
mpbird |
|