Metamath Proof Explorer


Theorem cvmfolem

Description: Lemma for cvmfo . (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmseu.1 𝐵 = 𝐶
cvmfolem.2 𝑋 = 𝐽
Assertion cvmfolem ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 : 𝐵onto𝑋 )

Proof

Step Hyp Ref Expression
1 cvmcov.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmseu.1 𝐵 = 𝐶
3 cvmfolem.2 𝑋 = 𝐽
4 cvmcn ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) )
5 2 3 cnf ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵𝑋 )
6 4 5 syl ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 : 𝐵𝑋 )
7 1 3 cvmcov ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑥𝑋 ) → ∃ 𝑧𝐽 ( 𝑥𝑧 ∧ ( 𝑆𝑧 ) ≠ ∅ ) )
8 7 ex ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝑥𝑋 → ∃ 𝑧𝐽 ( 𝑥𝑧 ∧ ( 𝑆𝑧 ) ≠ ∅ ) ) )
9 n0 ( ( 𝑆𝑧 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑆𝑧 ) )
10 1 cvmsn0 ( 𝑤 ∈ ( 𝑆𝑧 ) → 𝑤 ≠ ∅ )
11 10 ad2antll ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ) → 𝑤 ≠ ∅ )
12 n0 ( 𝑤 ≠ ∅ ↔ ∃ 𝑡 𝑡𝑤 )
13 11 12 sylib ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ) → ∃ 𝑡 𝑡𝑤 )
14 simprlr ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑤 ∈ ( 𝑆𝑧 ) )
15 1 cvmsss ( 𝑤 ∈ ( 𝑆𝑧 ) → 𝑤𝐶 )
16 14 15 syl ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑤𝐶 )
17 simprr ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑡𝑤 )
18 16 17 sseldd ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑡𝐶 )
19 elssuni ( 𝑡𝐶𝑡 𝐶 )
20 18 19 syl ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑡 𝐶 )
21 20 2 sseqtrrdi ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑡𝐵 )
22 simpll ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
23 1 cvmsf1o ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑤 ∈ ( 𝑆𝑧 ) ∧ 𝑡𝑤 ) → ( 𝐹𝑡 ) : 𝑡1-1-onto𝑧 )
24 22 14 17 23 syl3anc ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( 𝐹𝑡 ) : 𝑡1-1-onto𝑧 )
25 f1ocnv ( ( 𝐹𝑡 ) : 𝑡1-1-onto𝑧 ( 𝐹𝑡 ) : 𝑧1-1-onto𝑡 )
26 f1of ( ( 𝐹𝑡 ) : 𝑧1-1-onto𝑡 ( 𝐹𝑡 ) : 𝑧𝑡 )
27 24 25 26 3syl ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( 𝐹𝑡 ) : 𝑧𝑡 )
28 simprll ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑥𝑧 )
29 27 28 ffvelrnd ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑥 ) ∈ 𝑡 )
30 21 29 sseldd ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( ( 𝐹𝑡 ) ‘ 𝑥 ) ∈ 𝐵 )
31 f1ocnvfv2 ( ( ( 𝐹𝑡 ) : 𝑡1-1-onto𝑧𝑥𝑧 ) → ( ( 𝐹𝑡 ) ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) = 𝑥 )
32 24 28 31 syl2anc ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( ( 𝐹𝑡 ) ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) = 𝑥 )
33 fvres ( ( ( 𝐹𝑡 ) ‘ 𝑥 ) ∈ 𝑡 → ( ( 𝐹𝑡 ) ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) )
34 29 33 syl ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ( ( 𝐹𝑡 ) ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) )
35 32 34 eqtr3d ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → 𝑥 = ( 𝐹 ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) )
36 fveq2 ( 𝑦 = ( ( 𝐹𝑡 ) ‘ 𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) )
37 36 rspceeqv ( ( ( ( 𝐹𝑡 ) ‘ 𝑥 ) ∈ 𝐵𝑥 = ( 𝐹 ‘ ( ( 𝐹𝑡 ) ‘ 𝑥 ) ) ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) )
38 30 35 37 syl2anc ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ∧ 𝑡𝑤 ) ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) )
39 38 expr ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ) → ( 𝑡𝑤 → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
40 39 exlimdv ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ) → ( ∃ 𝑡 𝑡𝑤 → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
41 13 40 mpd ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ ( 𝑥𝑧𝑤 ∈ ( 𝑆𝑧 ) ) ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) )
42 41 expr ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ 𝑥𝑧 ) → ( 𝑤 ∈ ( 𝑆𝑧 ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
43 42 exlimdv ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ 𝑥𝑧 ) → ( ∃ 𝑤 𝑤 ∈ ( 𝑆𝑧 ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
44 9 43 syl5bi ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) ∧ 𝑥𝑧 ) → ( ( 𝑆𝑧 ) ≠ ∅ → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
45 44 expimpd ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧𝐽 ) → ( ( 𝑥𝑧 ∧ ( 𝑆𝑧 ) ≠ ∅ ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
46 45 rexlimdva ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( ∃ 𝑧𝐽 ( 𝑥𝑧 ∧ ( 𝑆𝑧 ) ≠ ∅ ) → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
47 8 46 syld ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝑥𝑋 → ∃ 𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
48 47 ralrimiv ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ∀ 𝑥𝑋𝑦𝐵 𝑥 = ( 𝐹𝑦 ) )
49 dffo3 ( 𝐹 : 𝐵onto𝑋 ↔ ( 𝐹 : 𝐵𝑋 ∧ ∀ 𝑥𝑋𝑦𝐵 𝑥 = ( 𝐹𝑦 ) ) )
50 6 48 49 sylanbrc ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 : 𝐵onto𝑋 )