Step |
Hyp |
Ref |
Expression |
1 |
|
cvmcov.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmseu.1 |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmfolem.2 |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
5 |
2 3
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ 𝑋 ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 : 𝐵 ⟶ 𝑋 ) |
7 |
1 3
|
cvmcov |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ∧ ( 𝑆 ‘ 𝑧 ) ≠ ∅ ) ) |
8 |
7
|
ex |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝑥 ∈ 𝑋 → ∃ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ∧ ( 𝑆 ‘ 𝑧 ) ≠ ∅ ) ) ) |
9 |
|
n0 |
⊢ ( ( 𝑆 ‘ 𝑧 ) ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) |
10 |
1
|
cvmsn0 |
⊢ ( 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) → 𝑤 ≠ ∅ ) |
11 |
10
|
ad2antll |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → 𝑤 ≠ ∅ ) |
12 |
|
n0 |
⊢ ( 𝑤 ≠ ∅ ↔ ∃ 𝑡 𝑡 ∈ 𝑤 ) |
13 |
11 12
|
sylib |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → ∃ 𝑡 𝑡 ∈ 𝑤 ) |
14 |
|
simprlr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) |
15 |
1
|
cvmsss |
⊢ ( 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) → 𝑤 ⊆ 𝐶 ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑤 ⊆ 𝐶 ) |
17 |
|
simprr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑡 ∈ 𝑤 ) |
18 |
16 17
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑡 ∈ 𝐶 ) |
19 |
|
elssuni |
⊢ ( 𝑡 ∈ 𝐶 → 𝑡 ⊆ ∪ 𝐶 ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑡 ⊆ ∪ 𝐶 ) |
21 |
20 2
|
sseqtrrdi |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑡 ⊆ 𝐵 ) |
22 |
|
simpll |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
23 |
1
|
cvmsf1o |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ∧ 𝑡 ∈ 𝑤 ) → ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑧 ) |
24 |
22 14 17 23
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑧 ) |
25 |
|
f1ocnv |
⊢ ( ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑧 → ◡ ( 𝐹 ↾ 𝑡 ) : 𝑧 –1-1-onto→ 𝑡 ) |
26 |
|
f1of |
⊢ ( ◡ ( 𝐹 ↾ 𝑡 ) : 𝑧 –1-1-onto→ 𝑡 → ◡ ( 𝐹 ↾ 𝑡 ) : 𝑧 ⟶ 𝑡 ) |
27 |
24 25 26
|
3syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ◡ ( 𝐹 ↾ 𝑡 ) : 𝑧 ⟶ 𝑡 ) |
28 |
|
simprll |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑥 ∈ 𝑧 ) |
29 |
27 28
|
ffvelrnd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ∈ 𝑡 ) |
30 |
21 29
|
sseldd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ∈ 𝐵 ) |
31 |
|
f1ocnvfv2 |
⊢ ( ( ( 𝐹 ↾ 𝑡 ) : 𝑡 –1-1-onto→ 𝑧 ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝐹 ↾ 𝑡 ) ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) = 𝑥 ) |
32 |
24 28 31
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ( ( 𝐹 ↾ 𝑡 ) ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) = 𝑥 ) |
33 |
|
fvres |
⊢ ( ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ∈ 𝑡 → ( ( 𝐹 ↾ 𝑡 ) ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) ) |
34 |
29 33
|
syl |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ( ( 𝐹 ↾ 𝑡 ) ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) = ( 𝐹 ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) ) |
35 |
32 34
|
eqtr3d |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → 𝑥 = ( 𝐹 ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) ) |
36 |
|
fveq2 |
⊢ ( 𝑦 = ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) ) |
37 |
36
|
rspceeqv |
⊢ ( ( ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ∈ 𝐵 ∧ 𝑥 = ( 𝐹 ‘ ( ◡ ( 𝐹 ↾ 𝑡 ) ‘ 𝑥 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
38 |
30 35 37
|
syl2anc |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ∧ 𝑡 ∈ 𝑤 ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
39 |
38
|
expr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → ( 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
40 |
39
|
exlimdv |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → ( ∃ 𝑡 𝑡 ∈ 𝑤 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
41 |
13 40
|
mpd |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑧 ∧ 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) ) ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
42 |
41
|
expr |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑧 ) → ( 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
43 |
42
|
exlimdv |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑧 ) → ( ∃ 𝑤 𝑤 ∈ ( 𝑆 ‘ 𝑧 ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
44 |
9 43
|
syl5bi |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) ∧ 𝑥 ∈ 𝑧 ) → ( ( 𝑆 ‘ 𝑧 ) ≠ ∅ → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
45 |
44
|
expimpd |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝑧 ∈ 𝐽 ) → ( ( 𝑥 ∈ 𝑧 ∧ ( 𝑆 ‘ 𝑧 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
46 |
45
|
rexlimdva |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( ∃ 𝑧 ∈ 𝐽 ( 𝑥 ∈ 𝑧 ∧ ( 𝑆 ‘ 𝑧 ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
47 |
8 46
|
syld |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ( 𝑥 ∈ 𝑋 → ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
48 |
47
|
ralrimiv |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) |
49 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ 𝑋 ↔ ( 𝐹 : 𝐵 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ∃ 𝑦 ∈ 𝐵 𝑥 = ( 𝐹 ‘ 𝑦 ) ) ) |
50 |
6 48 49
|
sylanbrc |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 : 𝐵 –onto→ 𝑋 ) |