| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift.1 | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmfo.2 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 3 |  | eqid | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 4 | 3 | cvmscbv | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑎  ∈  𝐽  ↦  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 5 | 4 1 2 | cvmfolem | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹 : 𝐵 –onto→ 𝑋 ) |