Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftiota.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmliftiota.h |
⊢ 𝐻 = ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
3 |
|
cvmliftiota.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmliftiota.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
5 |
|
cvmliftiota.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
6 |
|
cvmliftiota.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
7 |
|
coeq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑔 ) ) |
8 |
7
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ 𝑔 ) = 𝐺 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 0 ) = ( 𝑔 ‘ 0 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
11 |
8 10
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ) |
12 |
11
|
cbvriotavw |
⊢ ( ℩ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
13 |
2 12
|
eqtri |
⊢ 𝐻 = ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
14 |
1
|
cvmlift |
⊢ ( ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ 𝐺 ∈ ( II Cn 𝐽 ) ) ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) ) → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
15 |
3 4 5 6 14
|
syl22anc |
⊢ ( 𝜑 → ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) |
16 |
|
riotacl2 |
⊢ ( ∃! 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ∈ { 𝑔 ∈ ( II Cn 𝐶 ) ∣ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) } ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ) ∈ { 𝑔 ∈ ( II Cn 𝐶 ) ∣ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) } ) |
18 |
13 17
|
eqeltrid |
⊢ ( 𝜑 → 𝐻 ∈ { 𝑔 ∈ ( II Cn 𝐶 ) ∣ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) } ) |
19 |
|
coeq2 |
⊢ ( 𝑔 = 𝐻 → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ 𝐻 ) ) |
20 |
19
|
eqeq1d |
⊢ ( 𝑔 = 𝐻 → ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ↔ ( 𝐹 ∘ 𝐻 ) = 𝐺 ) ) |
21 |
|
fveq1 |
⊢ ( 𝑔 = 𝐻 → ( 𝑔 ‘ 0 ) = ( 𝐻 ‘ 0 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑔 = 𝐻 → ( ( 𝑔 ‘ 0 ) = 𝑃 ↔ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑔 = 𝐻 → ( ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) ) |
24 |
23
|
elrab |
⊢ ( 𝐻 ∈ { 𝑔 ∈ ( II Cn 𝐶 ) ∣ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) } ↔ ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) ) |
25 |
|
3anass |
⊢ ( ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ↔ ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) ) |
26 |
24 25
|
bitr4i |
⊢ ( 𝐻 ∈ { 𝑔 ∈ ( II Cn 𝐶 ) ∣ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 0 ) = 𝑃 ) } ↔ ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |
27 |
18 26
|
sylib |
⊢ ( 𝜑 → ( 𝐻 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐻 ) = 𝐺 ∧ ( 𝐻 ‘ 0 ) = 𝑃 ) ) |