| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmlift.1 | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | eqid | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 3 | 2 | cvmscbv | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑎  ∈  𝐽  ↦  { 𝑏  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑏  =  ( ◡ 𝐹  “  𝑎 )  ∧  ∀ 𝑐  ∈  𝑏 ( ∀ 𝑑  ∈  ( 𝑏  ∖  { 𝑐 } ) ( 𝑐  ∩  𝑑 )  =  ∅  ∧  ( 𝐹  ↾  𝑐 )  ∈  ( ( 𝐶  ↾t  𝑐 ) Homeo ( 𝐽  ↾t  𝑎 ) ) ) ) } ) | 
						
							| 4 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 7 |  | simprl | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 8 |  | simprr | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 9 | 3 1 4 5 6 7 8 | cvmliftlem15 | ⊢ ( ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  𝐺  ∈  ( II  Cn  𝐽 ) )  ∧  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) |