Metamath Proof Explorer


Theorem cvmlift

Description: One of the important properties of covering maps is that any path G in the base space "lifts" to a path f in the covering space such that F o. f = G , and given a starting point P in the covering space this lift is unique. The proof is contained in cvmliftlem1 thru cvmliftlem15 . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypothesis cvmlift.1 B=C
Assertion cvmlift FCCovMapJGIICnJPBFP=G0∃!fIICnCFf=Gf0=P

Proof

Step Hyp Ref Expression
1 cvmlift.1 B=C
2 eqid kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
3 2 cvmscbv kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=aJb𝒫C|b=F-1acbdbccd=FcC𝑡cHomeoJ𝑡a
4 eqid J=J
5 simpll FCCovMapJGIICnJPBFP=G0FCCovMapJ
6 simplr FCCovMapJGIICnJPBFP=G0GIICnJ
7 simprl FCCovMapJGIICnJPBFP=G0PB
8 simprr FCCovMapJGIICnJPBFP=G0FP=G0
9 3 1 4 5 6 7 8 cvmliftlem15 FCCovMapJGIICnJPBFP=G0∃!fIICnCFf=Gf0=P