Metamath Proof Explorer


Theorem cvmfo

Description: A covering map is an onto function. (Contributed by Mario Carneiro, 13-Feb-2015)

Ref Expression
Hypotheses cvmlift.1 B = C
cvmfo.2 X = J
Assertion cvmfo F C CovMap J F : B onto X

Proof

Step Hyp Ref Expression
1 cvmlift.1 B = C
2 cvmfo.2 X = J
3 eqid k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
4 3 cvmscbv k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = a J b 𝒫 C | b = F -1 a c b d b c c d = F c C 𝑡 c Homeo J 𝑡 a
5 4 1 2 cvmfolem F C CovMap J F : B onto X