Metamath Proof Explorer


Theorem cvmliftlem1

Description: Lemma for cvmlift . In cvmliftlem15 , we picked an N large enough so that the sections ( G " [ ( k - 1 ) / N , k / N ] ) are all contained in an even covering, and the function T enumerates these even coverings. So 1st( TM ) is a neighborhood of ( G " [ ( M - 1 ) / N , M / N ] ) , and 2nd( TM ) is an even covering of 1st( TM ) , which is to say a disjoint union of open sets in C whose image is 1st( TM ) . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem1.m φψM1N
Assertion cvmliftlem1 φψ2ndTMS1stTM

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem1.m φψM1N
13 relxp Relj×Sj
14 13 rgenw jJRelj×Sj
15 reliun ReljJj×SjjJRelj×Sj
16 14 15 mpbir ReljJj×Sj
17 9 adantr φψT:1NjJj×Sj
18 17 12 ffvelcdmd φψTMjJj×Sj
19 1st2nd ReljJj×SjTMjJj×SjTM=1stTM2ndTM
20 16 18 19 sylancr φψTM=1stTM2ndTM
21 20 18 eqeltrrd φψ1stTM2ndTMjJj×Sj
22 fveq2 j=1stTMSj=S1stTM
23 22 opeliunxp2 1stTM2ndTMjJj×Sj1stTMJ2ndTMS1stTM
24 23 simprbi 1stTM2ndTMjJj×Sj2ndTMS1stTM
25 21 24 syl φψ2ndTMS1stTM