Metamath Proof Explorer


Theorem cvmliftlem2

Description: Lemma for cvmlift . W = [ ( k - 1 ) / N , k / N ] is a subset of [ 0 , 1 ] for each M e. ( 1 ... N ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem1.m φ ψ M 1 N
cvmliftlem3.3 W = M 1 N M N
Assertion cvmliftlem2 φ ψ W 0 1

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem1.m φ ψ M 1 N
13 cvmliftlem3.3 W = M 1 N M N
14 0red φ ψ 0
15 1red φ ψ 1
16 elfznn M 1 N M
17 12 16 syl φ ψ M
18 17 nnred φ ψ M
19 peano2rem M M 1
20 18 19 syl φ ψ M 1
21 nnm1nn0 M M 1 0
22 17 21 syl φ ψ M 1 0
23 22 nn0ge0d φ ψ 0 M 1
24 8 adantr φ ψ N
25 24 nnred φ ψ N
26 24 nngt0d φ ψ 0 < N
27 divge0 M 1 0 M 1 N 0 < N 0 M 1 N
28 20 23 25 26 27 syl22anc φ ψ 0 M 1 N
29 elfzle2 M 1 N M N
30 12 29 syl φ ψ M N
31 24 nncnd φ ψ N
32 31 mulid1d φ ψ N 1 = N
33 30 32 breqtrrd φ ψ M N 1
34 ledivmul M 1 N 0 < N M N 1 M N 1
35 18 15 25 26 34 syl112anc φ ψ M N 1 M N 1
36 33 35 mpbird φ ψ M N 1
37 iccss 0 1 0 M 1 N M N 1 M 1 N M N 0 1
38 14 15 28 36 37 syl22anc φ ψ M 1 N M N 0 1
39 13 38 eqsstrid φ ψ W 0 1