Metamath Proof Explorer


Theorem cvmliftlem2

Description: Lemma for cvmlift . W = [ ( k - 1 ) / N , k / N ] is a subset of [ 0 , 1 ] for each M e. ( 1 ... N ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem1.m φψM1N
cvmliftlem3.3 W=M1NMN
Assertion cvmliftlem2 φψW01

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem1.m φψM1N
13 cvmliftlem3.3 W=M1NMN
14 0red φψ0
15 1red φψ1
16 elfznn M1NM
17 12 16 syl φψM
18 17 nnred φψM
19 peano2rem MM1
20 18 19 syl φψM1
21 nnm1nn0 MM10
22 17 21 syl φψM10
23 22 nn0ge0d φψ0M1
24 8 adantr φψN
25 24 nnred φψN
26 24 nngt0d φψ0<N
27 divge0 M10M1N0<N0M1N
28 20 23 25 26 27 syl22anc φψ0M1N
29 elfzle2 M1NMN
30 12 29 syl φψMN
31 24 nncnd φψN
32 31 mulridd φψ N1=N
33 30 32 breqtrrd φψM N1
34 ledivmul M1N0<NMN1M N1
35 18 15 25 26 34 syl112anc φψMN1M N1
36 33 35 mpbird φψMN1
37 iccss 010M1NMN1M1NMN01
38 14 15 28 36 37 syl22anc φψM1NMN01
39 13 38 eqsstrid φψW01