Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem1.m |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
13 |
|
cvmliftlem3.3 |
⊢ 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) |
14 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ∈ ℝ ) |
15 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 1 ∈ ℝ ) |
16 |
|
elfznn |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀 ∈ ℕ ) |
17 |
12 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℕ ) |
18 |
17
|
nnred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ℝ ) |
19 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 − 1 ) ∈ ℝ ) |
21 |
|
nnm1nn0 |
⊢ ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 ) |
22 |
17 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
23 |
22
|
nn0ge0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ ( 𝑀 − 1 ) ) |
24 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℕ ) |
25 |
24
|
nnred |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℝ ) |
26 |
24
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 < 𝑁 ) |
27 |
|
divge0 |
⊢ ( ( ( ( 𝑀 − 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 − 1 ) ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) ) |
28 |
20 23 25 26 27
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) ) |
29 |
|
elfzle2 |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀 ≤ 𝑁 ) |
30 |
12 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ≤ 𝑁 ) |
31 |
24
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑁 ∈ ℂ ) |
32 |
31
|
mulid1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑁 · 1 ) = 𝑁 ) |
33 |
30 32
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ≤ ( 𝑁 · 1 ) ) |
34 |
|
ledivmul |
⊢ ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑀 / 𝑁 ) ≤ 1 ↔ 𝑀 ≤ ( 𝑁 · 1 ) ) ) |
35 |
18 15 25 26 34
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑀 / 𝑁 ) ≤ 1 ↔ 𝑀 ≤ ( 𝑁 · 1 ) ) ) |
36 |
33 35
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑀 / 𝑁 ) ≤ 1 ) |
37 |
|
iccss |
⊢ ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) ∧ ( 𝑀 / 𝑁 ) ≤ 1 ) ) → ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ⊆ ( 0 [,] 1 ) ) |
38 |
14 15 28 36 37
|
syl22anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ⊆ ( 0 [,] 1 ) ) |
39 |
13 38
|
eqsstrid |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ⊆ ( 0 [,] 1 ) ) |