| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem1.m | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 13 |  | cvmliftlem3.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | 0red | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ∈  ℝ ) | 
						
							| 15 |  | 1red | ⊢ ( ( 𝜑  ∧  𝜓 )  →  1  ∈  ℝ ) | 
						
							| 16 |  | elfznn | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  𝑀  ∈  ℕ ) | 
						
							| 17 | 12 16 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ℕ ) | 
						
							| 18 | 17 | nnred | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ℝ ) | 
						
							| 19 |  | peano2rem | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 21 |  | nnm1nn0 | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 22 | 17 21 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 23 | 22 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ≤  ( 𝑀  −  1 ) ) | 
						
							| 24 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  ℕ ) | 
						
							| 25 | 24 | nnred | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  ℝ ) | 
						
							| 26 | 24 | nngt0d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  <  𝑁 ) | 
						
							| 27 |  | divge0 | ⊢ ( ( ( ( 𝑀  −  1 )  ∈  ℝ  ∧  0  ≤  ( 𝑀  −  1 ) )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  0  ≤  ( ( 𝑀  −  1 )  /  𝑁 ) ) | 
						
							| 28 | 20 23 25 26 27 | syl22anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  0  ≤  ( ( 𝑀  −  1 )  /  𝑁 ) ) | 
						
							| 29 |  | elfzle2 | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  𝑀  ≤  𝑁 ) | 
						
							| 30 | 12 29 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ≤  𝑁 ) | 
						
							| 31 | 24 | nncnd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑁  ∈  ℂ ) | 
						
							| 32 | 31 | mulridd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑁  ·  1 )  =  𝑁 ) | 
						
							| 33 | 30 32 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ≤  ( 𝑁  ·  1 ) ) | 
						
							| 34 |  | ledivmul | ⊢ ( ( 𝑀  ∈  ℝ  ∧  1  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( ( 𝑀  /  𝑁 )  ≤  1  ↔  𝑀  ≤  ( 𝑁  ·  1 ) ) ) | 
						
							| 35 | 18 15 25 26 34 | syl112anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑀  /  𝑁 )  ≤  1  ↔  𝑀  ≤  ( 𝑁  ·  1 ) ) ) | 
						
							| 36 | 33 35 | mpbird | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑀  /  𝑁 )  ≤  1 ) | 
						
							| 37 |  | iccss | ⊢ ( ( ( 0  ∈  ℝ  ∧  1  ∈  ℝ )  ∧  ( 0  ≤  ( ( 𝑀  −  1 )  /  𝑁 )  ∧  ( 𝑀  /  𝑁 )  ≤  1 ) )  →  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) )  ⊆  ( 0 [,] 1 ) ) | 
						
							| 38 | 14 15 28 36 37 | syl22anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) )  ⊆  ( 0 [,] 1 ) ) | 
						
							| 39 | 13 38 | eqsstrid | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  ( 0 [,] 1 ) ) |