Metamath Proof Explorer


Theorem cvmliftlem2

Description: Lemma for cvmlift . W = [ ( k - 1 ) / N , k / N ] is a subset of [ 0 , 1 ] for each M e. ( 1 ... N ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem1.m ( ( 𝜑𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) )
cvmliftlem3.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
Assertion cvmliftlem2 ( ( 𝜑𝜓 ) → 𝑊 ⊆ ( 0 [,] 1 ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem1.m ( ( 𝜑𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) )
13 cvmliftlem3.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
14 0red ( ( 𝜑𝜓 ) → 0 ∈ ℝ )
15 1red ( ( 𝜑𝜓 ) → 1 ∈ ℝ )
16 elfznn ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀 ∈ ℕ )
17 12 16 syl ( ( 𝜑𝜓 ) → 𝑀 ∈ ℕ )
18 17 nnred ( ( 𝜑𝜓 ) → 𝑀 ∈ ℝ )
19 peano2rem ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ )
20 18 19 syl ( ( 𝜑𝜓 ) → ( 𝑀 − 1 ) ∈ ℝ )
21 nnm1nn0 ( 𝑀 ∈ ℕ → ( 𝑀 − 1 ) ∈ ℕ0 )
22 17 21 syl ( ( 𝜑𝜓 ) → ( 𝑀 − 1 ) ∈ ℕ0 )
23 22 nn0ge0d ( ( 𝜑𝜓 ) → 0 ≤ ( 𝑀 − 1 ) )
24 8 adantr ( ( 𝜑𝜓 ) → 𝑁 ∈ ℕ )
25 24 nnred ( ( 𝜑𝜓 ) → 𝑁 ∈ ℝ )
26 24 nngt0d ( ( 𝜑𝜓 ) → 0 < 𝑁 )
27 divge0 ( ( ( ( 𝑀 − 1 ) ∈ ℝ ∧ 0 ≤ ( 𝑀 − 1 ) ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) )
28 20 23 25 26 27 syl22anc ( ( 𝜑𝜓 ) → 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) )
29 elfzle2 ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀𝑁 )
30 12 29 syl ( ( 𝜑𝜓 ) → 𝑀𝑁 )
31 24 nncnd ( ( 𝜑𝜓 ) → 𝑁 ∈ ℂ )
32 31 mulid1d ( ( 𝜑𝜓 ) → ( 𝑁 · 1 ) = 𝑁 )
33 30 32 breqtrrd ( ( 𝜑𝜓 ) → 𝑀 ≤ ( 𝑁 · 1 ) )
34 ledivmul ( ( 𝑀 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑀 / 𝑁 ) ≤ 1 ↔ 𝑀 ≤ ( 𝑁 · 1 ) ) )
35 18 15 25 26 34 syl112anc ( ( 𝜑𝜓 ) → ( ( 𝑀 / 𝑁 ) ≤ 1 ↔ 𝑀 ≤ ( 𝑁 · 1 ) ) )
36 33 35 mpbird ( ( 𝜑𝜓 ) → ( 𝑀 / 𝑁 ) ≤ 1 )
37 iccss ( ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ) ∧ ( 0 ≤ ( ( 𝑀 − 1 ) / 𝑁 ) ∧ ( 𝑀 / 𝑁 ) ≤ 1 ) ) → ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ⊆ ( 0 [,] 1 ) )
38 14 15 28 36 37 syl22anc ( ( 𝜑𝜓 ) → ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ⊆ ( 0 [,] 1 ) )
39 13 38 eqsstrid ( ( 𝜑𝜓 ) → 𝑊 ⊆ ( 0 [,] 1 ) )