Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem1.m |
|- ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) |
13 |
|
cvmliftlem3.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
14 |
|
0red |
|- ( ( ph /\ ps ) -> 0 e. RR ) |
15 |
|
1red |
|- ( ( ph /\ ps ) -> 1 e. RR ) |
16 |
|
elfznn |
|- ( M e. ( 1 ... N ) -> M e. NN ) |
17 |
12 16
|
syl |
|- ( ( ph /\ ps ) -> M e. NN ) |
18 |
17
|
nnred |
|- ( ( ph /\ ps ) -> M e. RR ) |
19 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
20 |
18 19
|
syl |
|- ( ( ph /\ ps ) -> ( M - 1 ) e. RR ) |
21 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
22 |
17 21
|
syl |
|- ( ( ph /\ ps ) -> ( M - 1 ) e. NN0 ) |
23 |
22
|
nn0ge0d |
|- ( ( ph /\ ps ) -> 0 <_ ( M - 1 ) ) |
24 |
8
|
adantr |
|- ( ( ph /\ ps ) -> N e. NN ) |
25 |
24
|
nnred |
|- ( ( ph /\ ps ) -> N e. RR ) |
26 |
24
|
nngt0d |
|- ( ( ph /\ ps ) -> 0 < N ) |
27 |
|
divge0 |
|- ( ( ( ( M - 1 ) e. RR /\ 0 <_ ( M - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( M - 1 ) / N ) ) |
28 |
20 23 25 26 27
|
syl22anc |
|- ( ( ph /\ ps ) -> 0 <_ ( ( M - 1 ) / N ) ) |
29 |
|
elfzle2 |
|- ( M e. ( 1 ... N ) -> M <_ N ) |
30 |
12 29
|
syl |
|- ( ( ph /\ ps ) -> M <_ N ) |
31 |
24
|
nncnd |
|- ( ( ph /\ ps ) -> N e. CC ) |
32 |
31
|
mulid1d |
|- ( ( ph /\ ps ) -> ( N x. 1 ) = N ) |
33 |
30 32
|
breqtrrd |
|- ( ( ph /\ ps ) -> M <_ ( N x. 1 ) ) |
34 |
|
ledivmul |
|- ( ( M e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) |
35 |
18 15 25 26 34
|
syl112anc |
|- ( ( ph /\ ps ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) |
36 |
33 35
|
mpbird |
|- ( ( ph /\ ps ) -> ( M / N ) <_ 1 ) |
37 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( M - 1 ) / N ) /\ ( M / N ) <_ 1 ) ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) |
38 |
14 15 28 36 37
|
syl22anc |
|- ( ( ph /\ ps ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) |
39 |
13 38
|
eqsstrid |
|- ( ( ph /\ ps ) -> W C_ ( 0 [,] 1 ) ) |