| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem1.m |  |-  ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) | 
						
							| 13 |  | cvmliftlem3.3 |  |-  W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) | 
						
							| 14 |  | 0red |  |-  ( ( ph /\ ps ) -> 0 e. RR ) | 
						
							| 15 |  | 1red |  |-  ( ( ph /\ ps ) -> 1 e. RR ) | 
						
							| 16 |  | elfznn |  |-  ( M e. ( 1 ... N ) -> M e. NN ) | 
						
							| 17 | 12 16 | syl |  |-  ( ( ph /\ ps ) -> M e. NN ) | 
						
							| 18 | 17 | nnred |  |-  ( ( ph /\ ps ) -> M e. RR ) | 
						
							| 19 |  | peano2rem |  |-  ( M e. RR -> ( M - 1 ) e. RR ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ph /\ ps ) -> ( M - 1 ) e. RR ) | 
						
							| 21 |  | nnm1nn0 |  |-  ( M e. NN -> ( M - 1 ) e. NN0 ) | 
						
							| 22 | 17 21 | syl |  |-  ( ( ph /\ ps ) -> ( M - 1 ) e. NN0 ) | 
						
							| 23 | 22 | nn0ge0d |  |-  ( ( ph /\ ps ) -> 0 <_ ( M - 1 ) ) | 
						
							| 24 | 8 | adantr |  |-  ( ( ph /\ ps ) -> N e. NN ) | 
						
							| 25 | 24 | nnred |  |-  ( ( ph /\ ps ) -> N e. RR ) | 
						
							| 26 | 24 | nngt0d |  |-  ( ( ph /\ ps ) -> 0 < N ) | 
						
							| 27 |  | divge0 |  |-  ( ( ( ( M - 1 ) e. RR /\ 0 <_ ( M - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( M - 1 ) / N ) ) | 
						
							| 28 | 20 23 25 26 27 | syl22anc |  |-  ( ( ph /\ ps ) -> 0 <_ ( ( M - 1 ) / N ) ) | 
						
							| 29 |  | elfzle2 |  |-  ( M e. ( 1 ... N ) -> M <_ N ) | 
						
							| 30 | 12 29 | syl |  |-  ( ( ph /\ ps ) -> M <_ N ) | 
						
							| 31 | 24 | nncnd |  |-  ( ( ph /\ ps ) -> N e. CC ) | 
						
							| 32 | 31 | mulridd |  |-  ( ( ph /\ ps ) -> ( N x. 1 ) = N ) | 
						
							| 33 | 30 32 | breqtrrd |  |-  ( ( ph /\ ps ) -> M <_ ( N x. 1 ) ) | 
						
							| 34 |  | ledivmul |  |-  ( ( M e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) | 
						
							| 35 | 18 15 25 26 34 | syl112anc |  |-  ( ( ph /\ ps ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) | 
						
							| 36 | 33 35 | mpbird |  |-  ( ( ph /\ ps ) -> ( M / N ) <_ 1 ) | 
						
							| 37 |  | iccss |  |-  ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( M - 1 ) / N ) /\ ( M / N ) <_ 1 ) ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) | 
						
							| 38 | 14 15 28 36 37 | syl22anc |  |-  ( ( ph /\ ps ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) | 
						
							| 39 | 13 38 | eqsstrid |  |-  ( ( ph /\ ps ) -> W C_ ( 0 [,] 1 ) ) |