| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem1.m |
|- ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) |
| 13 |
|
cvmliftlem3.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
| 14 |
|
0red |
|- ( ( ph /\ ps ) -> 0 e. RR ) |
| 15 |
|
1red |
|- ( ( ph /\ ps ) -> 1 e. RR ) |
| 16 |
|
elfznn |
|- ( M e. ( 1 ... N ) -> M e. NN ) |
| 17 |
12 16
|
syl |
|- ( ( ph /\ ps ) -> M e. NN ) |
| 18 |
17
|
nnred |
|- ( ( ph /\ ps ) -> M e. RR ) |
| 19 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
| 20 |
18 19
|
syl |
|- ( ( ph /\ ps ) -> ( M - 1 ) e. RR ) |
| 21 |
|
nnm1nn0 |
|- ( M e. NN -> ( M - 1 ) e. NN0 ) |
| 22 |
17 21
|
syl |
|- ( ( ph /\ ps ) -> ( M - 1 ) e. NN0 ) |
| 23 |
22
|
nn0ge0d |
|- ( ( ph /\ ps ) -> 0 <_ ( M - 1 ) ) |
| 24 |
8
|
adantr |
|- ( ( ph /\ ps ) -> N e. NN ) |
| 25 |
24
|
nnred |
|- ( ( ph /\ ps ) -> N e. RR ) |
| 26 |
24
|
nngt0d |
|- ( ( ph /\ ps ) -> 0 < N ) |
| 27 |
|
divge0 |
|- ( ( ( ( M - 1 ) e. RR /\ 0 <_ ( M - 1 ) ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( ( M - 1 ) / N ) ) |
| 28 |
20 23 25 26 27
|
syl22anc |
|- ( ( ph /\ ps ) -> 0 <_ ( ( M - 1 ) / N ) ) |
| 29 |
|
elfzle2 |
|- ( M e. ( 1 ... N ) -> M <_ N ) |
| 30 |
12 29
|
syl |
|- ( ( ph /\ ps ) -> M <_ N ) |
| 31 |
24
|
nncnd |
|- ( ( ph /\ ps ) -> N e. CC ) |
| 32 |
31
|
mulridd |
|- ( ( ph /\ ps ) -> ( N x. 1 ) = N ) |
| 33 |
30 32
|
breqtrrd |
|- ( ( ph /\ ps ) -> M <_ ( N x. 1 ) ) |
| 34 |
|
ledivmul |
|- ( ( M e. RR /\ 1 e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) |
| 35 |
18 15 25 26 34
|
syl112anc |
|- ( ( ph /\ ps ) -> ( ( M / N ) <_ 1 <-> M <_ ( N x. 1 ) ) ) |
| 36 |
33 35
|
mpbird |
|- ( ( ph /\ ps ) -> ( M / N ) <_ 1 ) |
| 37 |
|
iccss |
|- ( ( ( 0 e. RR /\ 1 e. RR ) /\ ( 0 <_ ( ( M - 1 ) / N ) /\ ( M / N ) <_ 1 ) ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) |
| 38 |
14 15 28 36 37
|
syl22anc |
|- ( ( ph /\ ps ) -> ( ( ( M - 1 ) / N ) [,] ( M / N ) ) C_ ( 0 [,] 1 ) ) |
| 39 |
13 38
|
eqsstrid |
|- ( ( ph /\ ps ) -> W C_ ( 0 [,] 1 ) ) |