| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem1.m |  |-  ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) | 
						
							| 13 |  | cvmliftlem3.3 |  |-  W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) | 
						
							| 14 |  | cvmliftlem3.m |  |-  ( ( ph /\ ps ) -> A e. W ) | 
						
							| 15 | 10 | adantr |  |-  ( ( ph /\ ps ) -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 16 |  | oveq1 |  |-  ( k = M -> ( k - 1 ) = ( M - 1 ) ) | 
						
							| 17 | 16 | oveq1d |  |-  ( k = M -> ( ( k - 1 ) / N ) = ( ( M - 1 ) / N ) ) | 
						
							| 18 |  | oveq1 |  |-  ( k = M -> ( k / N ) = ( M / N ) ) | 
						
							| 19 | 17 18 | oveq12d |  |-  ( k = M -> ( ( ( k - 1 ) / N ) [,] ( k / N ) ) = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) | 
						
							| 20 | 19 13 | eqtr4di |  |-  ( k = M -> ( ( ( k - 1 ) / N ) [,] ( k / N ) ) = W ) | 
						
							| 21 | 20 | imaeq2d |  |-  ( k = M -> ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) = ( G " W ) ) | 
						
							| 22 |  | 2fveq3 |  |-  ( k = M -> ( 1st ` ( T ` k ) ) = ( 1st ` ( T ` M ) ) ) | 
						
							| 23 | 21 22 | sseq12d |  |-  ( k = M -> ( ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) <-> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) ) | 
						
							| 24 | 23 | rspcv |  |-  ( M e. ( 1 ... N ) -> ( A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) -> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) ) | 
						
							| 25 | 12 15 24 | sylc |  |-  ( ( ph /\ ps ) -> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) | 
						
							| 26 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 27 | 26 3 | cnf |  |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 28 | 5 27 | syl |  |-  ( ph -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ ps ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 30 | 29 | ffund |  |-  ( ( ph /\ ps ) -> Fun G ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem2 |  |-  ( ( ph /\ ps ) -> W C_ ( 0 [,] 1 ) ) | 
						
							| 32 | 29 | fdmd |  |-  ( ( ph /\ ps ) -> dom G = ( 0 [,] 1 ) ) | 
						
							| 33 | 31 32 | sseqtrrd |  |-  ( ( ph /\ ps ) -> W C_ dom G ) | 
						
							| 34 |  | funfvima2 |  |-  ( ( Fun G /\ W C_ dom G ) -> ( A e. W -> ( G ` A ) e. ( G " W ) ) ) | 
						
							| 35 | 30 33 34 | syl2anc |  |-  ( ( ph /\ ps ) -> ( A e. W -> ( G ` A ) e. ( G " W ) ) ) | 
						
							| 36 | 14 35 | mpd |  |-  ( ( ph /\ ps ) -> ( G ` A ) e. ( G " W ) ) | 
						
							| 37 | 25 36 | sseldd |  |-  ( ( ph /\ ps ) -> ( G ` A ) e. ( 1st ` ( T ` M ) ) ) |