Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem1.m |
|- ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) |
13 |
|
cvmliftlem3.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
14 |
|
cvmliftlem3.m |
|- ( ( ph /\ ps ) -> A e. W ) |
15 |
10
|
adantr |
|- ( ( ph /\ ps ) -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
16 |
|
oveq1 |
|- ( k = M -> ( k - 1 ) = ( M - 1 ) ) |
17 |
16
|
oveq1d |
|- ( k = M -> ( ( k - 1 ) / N ) = ( ( M - 1 ) / N ) ) |
18 |
|
oveq1 |
|- ( k = M -> ( k / N ) = ( M / N ) ) |
19 |
17 18
|
oveq12d |
|- ( k = M -> ( ( ( k - 1 ) / N ) [,] ( k / N ) ) = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
20 |
19 13
|
eqtr4di |
|- ( k = M -> ( ( ( k - 1 ) / N ) [,] ( k / N ) ) = W ) |
21 |
20
|
imaeq2d |
|- ( k = M -> ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) = ( G " W ) ) |
22 |
|
2fveq3 |
|- ( k = M -> ( 1st ` ( T ` k ) ) = ( 1st ` ( T ` M ) ) ) |
23 |
21 22
|
sseq12d |
|- ( k = M -> ( ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) <-> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) ) |
24 |
23
|
rspcv |
|- ( M e. ( 1 ... N ) -> ( A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) -> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) ) |
25 |
12 15 24
|
sylc |
|- ( ( ph /\ ps ) -> ( G " W ) C_ ( 1st ` ( T ` M ) ) ) |
26 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
27 |
26 3
|
cnf |
|- ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) |
28 |
5 27
|
syl |
|- ( ph -> G : ( 0 [,] 1 ) --> X ) |
29 |
28
|
adantr |
|- ( ( ph /\ ps ) -> G : ( 0 [,] 1 ) --> X ) |
30 |
29
|
ffund |
|- ( ( ph /\ ps ) -> Fun G ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem2 |
|- ( ( ph /\ ps ) -> W C_ ( 0 [,] 1 ) ) |
32 |
29
|
fdmd |
|- ( ( ph /\ ps ) -> dom G = ( 0 [,] 1 ) ) |
33 |
31 32
|
sseqtrrd |
|- ( ( ph /\ ps ) -> W C_ dom G ) |
34 |
|
funfvima2 |
|- ( ( Fun G /\ W C_ dom G ) -> ( A e. W -> ( G ` A ) e. ( G " W ) ) ) |
35 |
30 33 34
|
syl2anc |
|- ( ( ph /\ ps ) -> ( A e. W -> ( G ` A ) e. ( G " W ) ) ) |
36 |
14 35
|
mpd |
|- ( ( ph /\ ps ) -> ( G ` A ) e. ( G " W ) ) |
37 |
25 36
|
sseldd |
|- ( ( ph /\ ps ) -> ( G ` A ) e. ( 1st ` ( T ` M ) ) ) |