Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
12
|
fveq1i |
|- ( Q ` 0 ) = ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) |
14 |
|
0z |
|- 0 e. ZZ |
15 |
|
seq1 |
|- ( 0 e. ZZ -> ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) ) |
16 |
14 15
|
ax-mp |
|- ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) |
17 |
13 16
|
eqtri |
|- ( Q ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) |
18 |
|
fnresi |
|- ( _I |` NN ) Fn NN |
19 |
|
c0ex |
|- 0 e. _V |
20 |
|
snex |
|- { <. 0 , P >. } e. _V |
21 |
19 20
|
fnsn |
|- { <. 0 , { <. 0 , P >. } >. } Fn { 0 } |
22 |
|
0nnn |
|- -. 0 e. NN |
23 |
|
disjsn |
|- ( ( NN i^i { 0 } ) = (/) <-> -. 0 e. NN ) |
24 |
22 23
|
mpbir |
|- ( NN i^i { 0 } ) = (/) |
25 |
19
|
snid |
|- 0 e. { 0 } |
26 |
24 25
|
pm3.2i |
|- ( ( NN i^i { 0 } ) = (/) /\ 0 e. { 0 } ) |
27 |
|
fvun2 |
|- ( ( ( _I |` NN ) Fn NN /\ { <. 0 , { <. 0 , P >. } >. } Fn { 0 } /\ ( ( NN i^i { 0 } ) = (/) /\ 0 e. { 0 } ) ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) ) |
28 |
18 21 26 27
|
mp3an |
|- ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) |
29 |
17 28
|
eqtri |
|- ( Q ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) |
30 |
19 20
|
fvsn |
|- ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) = { <. 0 , P >. } |
31 |
29 30
|
eqtri |
|- ( Q ` 0 ) = { <. 0 , P >. } |