| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 | 12 | fveq1i |  |-  ( Q ` 0 ) = ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) | 
						
							| 14 |  | 0z |  |-  0 e. ZZ | 
						
							| 15 |  | seq1 |  |-  ( 0 e. ZZ -> ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) | 
						
							| 17 | 13 16 | eqtri |  |-  ( Q ` 0 ) = ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) | 
						
							| 18 |  | fnresi |  |-  ( _I |` NN ) Fn NN | 
						
							| 19 |  | c0ex |  |-  0 e. _V | 
						
							| 20 |  | snex |  |-  { <. 0 , P >. } e. _V | 
						
							| 21 | 19 20 | fnsn |  |-  { <. 0 , { <. 0 , P >. } >. } Fn { 0 } | 
						
							| 22 |  | 0nnn |  |-  -. 0 e. NN | 
						
							| 23 |  | disjsn |  |-  ( ( NN i^i { 0 } ) = (/) <-> -. 0 e. NN ) | 
						
							| 24 | 22 23 | mpbir |  |-  ( NN i^i { 0 } ) = (/) | 
						
							| 25 | 19 | snid |  |-  0 e. { 0 } | 
						
							| 26 | 24 25 | pm3.2i |  |-  ( ( NN i^i { 0 } ) = (/) /\ 0 e. { 0 } ) | 
						
							| 27 |  | fvun2 |  |-  ( ( ( _I |` NN ) Fn NN /\ { <. 0 , { <. 0 , P >. } >. } Fn { 0 } /\ ( ( NN i^i { 0 } ) = (/) /\ 0 e. { 0 } ) ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) ) | 
						
							| 28 | 18 21 26 27 | mp3an |  |-  ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) | 
						
							| 29 | 17 28 | eqtri |  |-  ( Q ` 0 ) = ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) | 
						
							| 30 | 19 20 | fvsn |  |-  ( { <. 0 , { <. 0 , P >. } >. } ` 0 ) = { <. 0 , P >. } | 
						
							| 31 | 29 30 | eqtri |  |-  ( Q ` 0 ) = { <. 0 , P >. } |