Metamath Proof Explorer


Theorem cvmliftlem4

Description: Lemma for cvmlift . The function Q will be our lifted path, defined piecewise on each section [ ( M - 1 ) / N , M / N ] for M e. ( 1 ... N ) . For M = 0 , it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to P . (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
Assertion cvmliftlem4 Q0=0P

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 12 fveq1i Q0=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P0
14 0z 0
15 seq1 0seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P0=I00P0
16 14 15 ax-mp seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P0=I00P0
17 13 16 eqtri Q0=I00P0
18 fnresi IFn
19 c0ex 0V
20 snex 0PV
21 19 20 fnsn 00PFn0
22 0nnn ¬0
23 disjsn 0=¬0
24 22 23 mpbir 0=
25 19 snid 00
26 24 25 pm3.2i 0=00
27 fvun2 IFn00PFn00=00I00P0=00P0
28 18 21 26 27 mp3an I00P0=00P0
29 17 28 eqtri Q0=00P0
30 19 20 fvsn 00P0=0P
31 29 30 eqtri Q0=0P