Metamath Proof Explorer


Theorem cvmliftlem4

Description: Lemma for cvmlift . The function Q will be our lifted path, defined piecewise on each section [ ( M - 1 ) / N , M / N ] for M e. ( 1 ... N ) . For M = 0 , it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to P . (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
Assertion cvmliftlem4 Q 0 = 0 P

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 12 fveq1i Q 0 = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P 0
14 0z 0
15 seq1 0 seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P 0 = I 0 0 P 0
16 14 15 ax-mp seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P 0 = I 0 0 P 0
17 13 16 eqtri Q 0 = I 0 0 P 0
18 fnresi I Fn
19 c0ex 0 V
20 snex 0 P V
21 19 20 fnsn 0 0 P Fn 0
22 0nnn ¬ 0
23 disjsn 0 = ¬ 0
24 22 23 mpbir 0 =
25 19 snid 0 0
26 24 25 pm3.2i 0 = 0 0
27 fvun2 I Fn 0 0 P Fn 0 0 = 0 0 I 0 0 P 0 = 0 0 P 0
28 18 21 26 27 mp3an I 0 0 P 0 = 0 0 P 0
29 17 28 eqtri Q 0 = 0 0 P 0
30 19 20 fvsn 0 0 P 0 = 0 P
31 29 30 eqtri Q 0 = 0 P