Metamath Proof Explorer


Theorem cvmliftlem5

Description: Lemma for cvmlift . Definition of Q at a successor. This is a function defined on W as ` ``' ( T |`I ) o. G where I is the unique covering set of 2nd( TM ) that contains Q ( M - 1 ) evaluated at the last defined point, namely ( M - 1 ) / N (note that for M = 1 this is using the seed value Q ( 0 ) ( 0 ) = P ). (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
cvmliftlem5.3 W = M 1 N M N
Assertion cvmliftlem5 φ M Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 cvmliftlem5.3 W = M 1 N M N
14 0z 0
15 simpr φ M M
16 nnuz = 1
17 1e0p1 1 = 0 + 1
18 17 fveq2i 1 = 0 + 1
19 16 18 eqtri = 0 + 1
20 15 19 eleqtrdi φ M M 0 + 1
21 seqm1 0 M 0 + 1 seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M
22 14 20 21 sylancr φ M seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M
23 12 fveq1i Q M = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M
24 12 fveq1i Q M 1 = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M 1
25 24 oveq1i Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M
26 22 23 25 3eqtr4g φ M Q M = Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M
27 0nnn ¬ 0
28 disjsn 0 = ¬ 0
29 27 28 mpbir 0 =
30 fnresi I Fn
31 c0ex 0 V
32 snex 0 P V
33 31 32 fnsn 0 0 P Fn 0
34 fvun1 I Fn 0 0 P Fn 0 0 = M I 0 0 P M = I M
35 30 33 34 mp3an12 0 = M I 0 0 P M = I M
36 29 15 35 sylancr φ M I 0 0 P M = I M
37 fvresi M I M = M
38 37 adantl φ M I M = M
39 36 38 eqtrd φ M I 0 0 P M = M
40 39 oveq2d φ M Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P M = Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z M
41 fvexd φ Q M 1 V
42 simpr x = Q M 1 m = M m = M
43 42 oveq1d x = Q M 1 m = M m 1 = M 1
44 43 oveq1d x = Q M 1 m = M m 1 N = M 1 N
45 42 oveq1d x = Q M 1 m = M m N = M N
46 44 45 oveq12d x = Q M 1 m = M m 1 N m N = M 1 N M N
47 46 13 eqtr4di x = Q M 1 m = M m 1 N m N = W
48 42 fveq2d x = Q M 1 m = M T m = T M
49 48 fveq2d x = Q M 1 m = M 2 nd T m = 2 nd T M
50 simpl x = Q M 1 m = M x = Q M 1
51 50 44 fveq12d x = Q M 1 m = M x m 1 N = Q M 1 M 1 N
52 51 eleq1d x = Q M 1 m = M x m 1 N b Q M 1 M 1 N b
53 49 52 riotaeqbidv x = Q M 1 m = M ι b 2 nd T m | x m 1 N b = ι b 2 nd T M | Q M 1 M 1 N b
54 53 reseq2d x = Q M 1 m = M F ι b 2 nd T m | x m 1 N b = F ι b 2 nd T M | Q M 1 M 1 N b
55 54 cnveqd x = Q M 1 m = M F ι b 2 nd T m | x m 1 N b -1 = F ι b 2 nd T M | Q M 1 M 1 N b -1
56 55 fveq1d x = Q M 1 m = M F ι b 2 nd T m | x m 1 N b -1 G z = F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
57 47 56 mpteq12dv x = Q M 1 m = M z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
58 eqid x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z = x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z
59 ovex M 1 N M N V
60 13 59 eqeltri W V
61 60 mptex z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z V
62 57 58 61 ovmpoa Q M 1 V M Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
63 41 62 sylan φ M Q M 1 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
64 26 40 63 3eqtrd φ M Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z