Metamath Proof Explorer


Theorem cvmliftlem5

Description: Lemma for cvmlift . Definition of Q at a successor. This is a function defined on W as ` ``' ( T |`I ) o. G where I is the unique covering set of 2nd( TM ) that contains Q ( M - 1 ) evaluated at the last defined point, namely ( M - 1 ) / N (note that for M = 1 this is using the seed value Q ( 0 ) ( 0 ) = P ). (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
cvmliftlem5.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
Assertion cvmliftlem5 ( ( 𝜑𝑀 ∈ ℕ ) → ( 𝑄𝑀 ) = ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
13 cvmliftlem5.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
14 0z 0 ∈ ℤ
15 simpr ( ( 𝜑𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ )
16 nnuz ℕ = ( ℤ ‘ 1 )
17 1e0p1 1 = ( 0 + 1 )
18 17 fveq2i ( ℤ ‘ 1 ) = ( ℤ ‘ ( 0 + 1 ) )
19 16 18 eqtri ℕ = ( ℤ ‘ ( 0 + 1 ) )
20 15 19 eleqtrdi ( ( 𝜑𝑀 ∈ ℕ ) → 𝑀 ∈ ( ℤ ‘ ( 0 + 1 ) ) )
21 seqm1 ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ( ℤ ‘ ( 0 + 1 ) ) ) → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 𝑀 ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) ) )
22 14 20 21 sylancr ( ( 𝜑𝑀 ∈ ℕ ) → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 𝑀 ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) ) )
23 12 fveq1i ( 𝑄𝑀 ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 𝑀 )
24 12 fveq1i ( 𝑄 ‘ ( 𝑀 − 1 ) ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ ( 𝑀 − 1 ) )
25 24 oveq1i ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) )
26 22 23 25 3eqtr4g ( ( 𝜑𝑀 ∈ ℕ ) → ( 𝑄𝑀 ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) ) )
27 0nnn ¬ 0 ∈ ℕ
28 disjsn ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ )
29 27 28 mpbir ( ℕ ∩ { 0 } ) = ∅
30 fnresi ( I ↾ ℕ ) Fn ℕ
31 c0ex 0 ∈ V
32 snex { ⟨ 0 , 𝑃 ⟩ } ∈ V
33 31 32 fnsn { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } Fn { 0 }
34 fvun1 ( ( ( I ↾ ℕ ) Fn ℕ ∧ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } Fn { 0 } ∧ ( ( ℕ ∩ { 0 } ) = ∅ ∧ 𝑀 ∈ ℕ ) ) → ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) )
35 30 33 34 mp3an12 ( ( ( ℕ ∩ { 0 } ) = ∅ ∧ 𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) )
36 29 15 35 sylancr ( ( 𝜑𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) )
37 fvresi ( 𝑀 ∈ ℕ → ( ( I ↾ ℕ ) ‘ 𝑀 ) = 𝑀 )
38 37 adantl ( ( 𝜑𝑀 ∈ ℕ ) → ( ( I ↾ ℕ ) ‘ 𝑀 ) = 𝑀 )
39 36 38 eqtrd ( ( 𝜑𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) = 𝑀 )
40 39 oveq2d ( ( 𝜑𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 𝑀 ) ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) 𝑀 ) )
41 fvexd ( 𝜑 → ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∈ V )
42 simpr ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 )
43 42 oveq1d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑚 − 1 ) = ( 𝑀 − 1 ) )
44 43 oveq1d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 − 1 ) / 𝑁 ) = ( ( 𝑀 − 1 ) / 𝑁 ) )
45 42 oveq1d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑚 / 𝑁 ) = ( 𝑀 / 𝑁 ) )
46 44 45 oveq12d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) )
47 46 13 eqtr4di ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) = 𝑊 )
48 42 fveq2d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑇𝑚 ) = ( 𝑇𝑀 ) )
49 48 fveq2d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 2nd ‘ ( 𝑇𝑚 ) ) = ( 2nd ‘ ( 𝑇𝑀 ) ) )
50 simpl ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) )
51 50 44 fveq12d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) )
52 51 eleq1d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ↔ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) )
53 49 52 riotaeqbidv ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) = ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) )
54 53 reseq2d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) = ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) )
55 54 cnveqd ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) = ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) )
56 55 fveq1d ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) = ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) )
57 47 56 mpteq12dv ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) = ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )
58 eqid ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) = ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )
59 ovex ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ∈ V
60 13 59 eqeltri 𝑊 ∈ V
61 60 mptex ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ∈ V
62 57 58 61 ovmpoa ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∈ V ∧ 𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) 𝑀 ) = ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )
63 41 62 sylan ( ( 𝜑𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) 𝑀 ) = ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )
64 26 40 63 3eqtrd ( ( 𝜑𝑀 ∈ ℕ ) → ( 𝑄𝑀 ) = ( 𝑧𝑊 ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) )