| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem5.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ℕ ) | 
						
							| 16 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 17 |  | 1e0p1 | ⊢ 1  =  ( 0  +  1 ) | 
						
							| 18 | 17 | fveq2i | ⊢ ( ℤ≥ ‘ 1 )  =  ( ℤ≥ ‘ ( 0  +  1 ) ) | 
						
							| 19 | 16 18 | eqtri | ⊢ ℕ  =  ( ℤ≥ ‘ ( 0  +  1 ) ) | 
						
							| 20 | 15 19 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  𝑀  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) ) | 
						
							| 21 |  | seqm1 | ⊢ ( ( 0  ∈  ℤ  ∧  𝑀  ∈  ( ℤ≥ ‘ ( 0  +  1 ) ) )  →  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 𝑀 )  =  ( ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) | 
						
							| 22 | 14 20 21 | sylancr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 𝑀 )  =  ( ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) | 
						
							| 23 | 12 | fveq1i | ⊢ ( 𝑄 ‘ 𝑀 )  =  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 𝑀 ) | 
						
							| 24 | 12 | fveq1i | ⊢ ( 𝑄 ‘ ( 𝑀  −  1 ) )  =  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ ( 𝑀  −  1 ) ) | 
						
							| 25 | 24 | oveq1i | ⊢ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) )  =  ( ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) | 
						
							| 26 | 22 23 25 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑄 ‘ 𝑀 )  =  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) | 
						
							| 27 |  | 0nnn | ⊢ ¬  0  ∈  ℕ | 
						
							| 28 |  | disjsn | ⊢ ( ( ℕ  ∩  { 0 } )  =  ∅  ↔  ¬  0  ∈  ℕ ) | 
						
							| 29 | 27 28 | mpbir | ⊢ ( ℕ  ∩  { 0 } )  =  ∅ | 
						
							| 30 |  | fnresi | ⊢ (  I   ↾  ℕ )  Fn  ℕ | 
						
							| 31 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 32 |  | snex | ⊢ { 〈 0 ,  𝑃 〉 }  ∈  V | 
						
							| 33 | 31 32 | fnsn | ⊢ { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 }  Fn  { 0 } | 
						
							| 34 |  | fvun1 | ⊢ ( ( (  I   ↾  ℕ )  Fn  ℕ  ∧  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 }  Fn  { 0 }  ∧  ( ( ℕ  ∩  { 0 } )  =  ∅  ∧  𝑀  ∈  ℕ ) )  →  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 )  =  ( (  I   ↾  ℕ ) ‘ 𝑀 ) ) | 
						
							| 35 | 30 33 34 | mp3an12 | ⊢ ( ( ( ℕ  ∩  { 0 } )  =  ∅  ∧  𝑀  ∈  ℕ )  →  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 )  =  ( (  I   ↾  ℕ ) ‘ 𝑀 ) ) | 
						
							| 36 | 29 15 35 | sylancr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 )  =  ( (  I   ↾  ℕ ) ‘ 𝑀 ) ) | 
						
							| 37 |  | fvresi | ⊢ ( 𝑀  ∈  ℕ  →  ( (  I   ↾  ℕ ) ‘ 𝑀 )  =  𝑀 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( (  I   ↾  ℕ ) ‘ 𝑀 )  =  𝑀 ) | 
						
							| 39 | 36 38 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 )  =  𝑀 ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 𝑀 ) )  =  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 ) ) | 
						
							| 41 |  | fvexd | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∈  V ) | 
						
							| 42 |  | simpr | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  𝑚  =  𝑀 ) | 
						
							| 43 | 42 | oveq1d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑚  −  1 )  =  ( 𝑀  −  1 ) ) | 
						
							| 44 | 43 | oveq1d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ( 𝑚  −  1 )  /  𝑁 )  =  ( ( 𝑀  −  1 )  /  𝑁 ) ) | 
						
							| 45 | 42 | oveq1d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑚  /  𝑁 )  =  ( 𝑀  /  𝑁 ) ) | 
						
							| 46 | 44 45 | oveq12d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 47 | 46 13 | eqtr4di | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  =  𝑊 ) | 
						
							| 48 | 42 | fveq2d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑇 ‘ 𝑚 )  =  ( 𝑇 ‘ 𝑀 ) ) | 
						
							| 49 | 48 | fveq2d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) )  =  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 50 |  | simpl | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 51 | 50 44 | fveq12d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) | 
						
							| 52 | 51 | eleq1d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏  ↔  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 53 | 49 52 | riotaeqbidv | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 54 | 53 | reseq2d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  =  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 55 | 54 | cnveqd | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  =  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 56 | 55 | fveq1d | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 57 | 47 56 | mpteq12dv | ⊢ ( ( 𝑥  =  ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∧  𝑚  =  𝑀 )  →  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) )  =  ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 59 |  | ovex | ⊢ ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) )  ∈  V | 
						
							| 60 | 13 59 | eqeltri | ⊢ 𝑊  ∈  V | 
						
							| 61 | 60 | mptex | ⊢ ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  V | 
						
							| 62 | 57 58 61 | ovmpoa | ⊢ ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) )  ∈  V  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 63 | 41 62 | sylan | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 64 | 26 40 63 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |