Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem5.3 |
⊢ 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) |
14 |
|
0z |
⊢ 0 ∈ ℤ |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
|
1e0p1 |
⊢ 1 = ( 0 + 1 ) |
18 |
17
|
fveq2i |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ ( 0 + 1 ) ) |
19 |
16 18
|
eqtri |
⊢ ℕ = ( ℤ≥ ‘ ( 0 + 1 ) ) |
20 |
15 19
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) |
21 |
|
seqm1 |
⊢ ( ( 0 ∈ ℤ ∧ 𝑀 ∈ ( ℤ≥ ‘ ( 0 + 1 ) ) ) → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 𝑀 ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) |
22 |
14 20 21
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 𝑀 ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) |
23 |
12
|
fveq1i |
⊢ ( 𝑄 ‘ 𝑀 ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 𝑀 ) |
24 |
12
|
fveq1i |
⊢ ( 𝑄 ‘ ( 𝑀 − 1 ) ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ ( 𝑀 − 1 ) ) |
25 |
24
|
oveq1i |
⊢ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) = ( ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) |
26 |
22 23 25
|
3eqtr4g |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑄 ‘ 𝑀 ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) ) |
27 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
28 |
|
disjsn |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) |
29 |
27 28
|
mpbir |
⊢ ( ℕ ∩ { 0 } ) = ∅ |
30 |
|
fnresi |
⊢ ( I ↾ ℕ ) Fn ℕ |
31 |
|
c0ex |
⊢ 0 ∈ V |
32 |
|
snex |
⊢ { 〈 0 , 𝑃 〉 } ∈ V |
33 |
31 32
|
fnsn |
⊢ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } Fn { 0 } |
34 |
|
fvun1 |
⊢ ( ( ( I ↾ ℕ ) Fn ℕ ∧ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } Fn { 0 } ∧ ( ( ℕ ∩ { 0 } ) = ∅ ∧ 𝑀 ∈ ℕ ) ) → ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) ) |
35 |
30 33 34
|
mp3an12 |
⊢ ( ( ( ℕ ∩ { 0 } ) = ∅ ∧ 𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) ) |
36 |
29 15 35
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) = ( ( I ↾ ℕ ) ‘ 𝑀 ) ) |
37 |
|
fvresi |
⊢ ( 𝑀 ∈ ℕ → ( ( I ↾ ℕ ) ‘ 𝑀 ) = 𝑀 ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( I ↾ ℕ ) ‘ 𝑀 ) = 𝑀 ) |
39 |
36 38
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) = 𝑀 ) |
40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 𝑀 ) ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 ) ) |
41 |
|
fvexd |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∈ V ) |
42 |
|
simpr |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → 𝑚 = 𝑀 ) |
43 |
42
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑚 − 1 ) = ( 𝑀 − 1 ) ) |
44 |
43
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( 𝑚 − 1 ) / 𝑁 ) = ( ( 𝑀 − 1 ) / 𝑁 ) ) |
45 |
42
|
oveq1d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑚 / 𝑁 ) = ( 𝑀 / 𝑁 ) ) |
46 |
44 45
|
oveq12d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ) |
47 |
46 13
|
eqtr4di |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) = 𝑊 ) |
48 |
42
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ 𝑀 ) ) |
49 |
48
|
fveq2d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) = ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
50 |
|
simpl |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ) |
51 |
50 44
|
fveq12d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) |
52 |
51
|
eleq1d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ↔ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) |
53 |
49 52
|
riotaeqbidv |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) = ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) |
54 |
53
|
reseq2d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) = ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) |
55 |
54
|
cnveqd |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) = ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) |
56 |
55
|
fveq1d |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) = ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) |
57 |
47 56
|
mpteq12dv |
⊢ ( ( 𝑥 = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∧ 𝑚 = 𝑀 ) → ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
58 |
|
eqid |
⊢ ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) = ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
59 |
|
ovex |
⊢ ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ∈ V |
60 |
13 59
|
eqeltri |
⊢ 𝑊 ∈ V |
61 |
60
|
mptex |
⊢ ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ V |
62 |
57 58 61
|
ovmpoa |
⊢ ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ∈ V ∧ 𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
63 |
41 62
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) 𝑀 ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
64 |
26 40 63
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |