| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
| 13 |
|
cvmliftlem5.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
| 14 |
|
0z |
|- 0 e. ZZ |
| 15 |
|
simpr |
|- ( ( ph /\ M e. NN ) -> M e. NN ) |
| 16 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 17 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 18 |
17
|
fveq2i |
|- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 19 |
16 18
|
eqtri |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 20 |
15 19
|
eleqtrdi |
|- ( ( ph /\ M e. NN ) -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 21 |
|
seqm1 |
|- ( ( 0 e. ZZ /\ M e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` M ) = ( ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) ) |
| 22 |
14 20 21
|
sylancr |
|- ( ( ph /\ M e. NN ) -> ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` M ) = ( ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) ) |
| 23 |
12
|
fveq1i |
|- ( Q ` M ) = ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` M ) |
| 24 |
12
|
fveq1i |
|- ( Q ` ( M - 1 ) ) = ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` ( M - 1 ) ) |
| 25 |
24
|
oveq1i |
|- ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) = ( ( seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) |
| 26 |
22 23 25
|
3eqtr4g |
|- ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) ) |
| 27 |
|
0nnn |
|- -. 0 e. NN |
| 28 |
|
disjsn |
|- ( ( NN i^i { 0 } ) = (/) <-> -. 0 e. NN ) |
| 29 |
27 28
|
mpbir |
|- ( NN i^i { 0 } ) = (/) |
| 30 |
|
fnresi |
|- ( _I |` NN ) Fn NN |
| 31 |
|
c0ex |
|- 0 e. _V |
| 32 |
|
snex |
|- { <. 0 , P >. } e. _V |
| 33 |
31 32
|
fnsn |
|- { <. 0 , { <. 0 , P >. } >. } Fn { 0 } |
| 34 |
|
fvun1 |
|- ( ( ( _I |` NN ) Fn NN /\ { <. 0 , { <. 0 , P >. } >. } Fn { 0 } /\ ( ( NN i^i { 0 } ) = (/) /\ M e. NN ) ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) = ( ( _I |` NN ) ` M ) ) |
| 35 |
30 33 34
|
mp3an12 |
|- ( ( ( NN i^i { 0 } ) = (/) /\ M e. NN ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) = ( ( _I |` NN ) ` M ) ) |
| 36 |
29 15 35
|
sylancr |
|- ( ( ph /\ M e. NN ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) = ( ( _I |` NN ) ` M ) ) |
| 37 |
|
fvresi |
|- ( M e. NN -> ( ( _I |` NN ) ` M ) = M ) |
| 38 |
37
|
adantl |
|- ( ( ph /\ M e. NN ) -> ( ( _I |` NN ) ` M ) = M ) |
| 39 |
36 38
|
eqtrd |
|- ( ( ph /\ M e. NN ) -> ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) = M ) |
| 40 |
39
|
oveq2d |
|- ( ( ph /\ M e. NN ) -> ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) ( ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ` M ) ) = ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) M ) ) |
| 41 |
|
fvexd |
|- ( ph -> ( Q ` ( M - 1 ) ) e. _V ) |
| 42 |
|
simpr |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> m = M ) |
| 43 |
42
|
oveq1d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( m - 1 ) = ( M - 1 ) ) |
| 44 |
43
|
oveq1d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( ( m - 1 ) / N ) = ( ( M - 1 ) / N ) ) |
| 45 |
42
|
oveq1d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( m / N ) = ( M / N ) ) |
| 46 |
44 45
|
oveq12d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( ( ( m - 1 ) / N ) [,] ( m / N ) ) = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
| 47 |
46 13
|
eqtr4di |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( ( ( m - 1 ) / N ) [,] ( m / N ) ) = W ) |
| 48 |
42
|
fveq2d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( T ` m ) = ( T ` M ) ) |
| 49 |
48
|
fveq2d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( 2nd ` ( T ` m ) ) = ( 2nd ` ( T ` M ) ) ) |
| 50 |
|
simpl |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> x = ( Q ` ( M - 1 ) ) ) |
| 51 |
50 44
|
fveq12d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( x ` ( ( m - 1 ) / N ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) |
| 52 |
51
|
eleq1d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( ( x ` ( ( m - 1 ) / N ) ) e. b <-> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) |
| 53 |
49 52
|
riotaeqbidv |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) |
| 54 |
53
|
reseq2d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) = ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
| 55 |
54
|
cnveqd |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) = `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
| 56 |
55
|
fveq1d |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) |
| 57 |
47 56
|
mpteq12dv |
|- ( ( x = ( Q ` ( M - 1 ) ) /\ m = M ) -> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 58 |
|
eqid |
|- ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) = ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 59 |
|
ovex |
|- ( ( ( M - 1 ) / N ) [,] ( M / N ) ) e. _V |
| 60 |
13 59
|
eqeltri |
|- W e. _V |
| 61 |
60
|
mptex |
|- ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. _V |
| 62 |
57 58 61
|
ovmpoa |
|- ( ( ( Q ` ( M - 1 ) ) e. _V /\ M e. NN ) -> ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 63 |
41 62
|
sylan |
|- ( ( ph /\ M e. NN ) -> ( ( Q ` ( M - 1 ) ) ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 64 |
26 40 63
|
3eqtrd |
|- ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |