| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem5.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | cvmliftlem6.1 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 15 |  | cvmliftlem6.2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 16 | 14 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 16 | cvmliftlem1 | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 18 | 1 | cvmsss | ⊢ ( ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  →  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  𝐶 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  𝐶 ) | 
						
							| 20 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 21 | 15 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 22 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 23 | 2 3 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 24 | 20 22 23 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 25 |  | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ 𝑋  →  𝐹  Fn  𝐵 ) | 
						
							| 26 |  | fniniseg | ⊢ ( 𝐹  Fn  𝐵  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 27 | 24 25 26 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 28 | 21 27 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) | 
						
							| 29 | 28 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵 ) | 
						
							| 30 | 28 | simprd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) | 
						
							| 31 |  | elfznn | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  𝑀  ∈  ℕ ) | 
						
							| 32 | 16 31 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 33 | 32 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 34 |  | peano2rem | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 36 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 37 | 35 36 | nndivred | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 38 | 37 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ* ) | 
						
							| 39 | 33 36 | nndivred | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝑀  /  𝑁 )  ∈  ℝ ) | 
						
							| 40 | 39 | rexrd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝑀  /  𝑁 )  ∈  ℝ* ) | 
						
							| 41 | 33 | ltm1d | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 42 | 36 | nnred | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 43 | 36 | nngt0d | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  0  <  𝑁 ) | 
						
							| 44 |  | ltdiv1 | ⊢ ( ( ( 𝑀  −  1 )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) ) | 
						
							| 45 | 35 33 42 43 44 | syl112anc | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) ) | 
						
							| 46 | 41 45 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) | 
						
							| 47 | 37 39 46 | ltled | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ≤  ( 𝑀  /  𝑁 ) ) | 
						
							| 48 |  | lbicc2 | ⊢ ( ( ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ*  ∧  ( 𝑀  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑀  −  1 )  /  𝑁 )  ≤  ( 𝑀  /  𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 49 | 38 40 47 48 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 50 | 49 13 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  𝑊 ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 11 16 13 50 | cvmliftlem3 | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 52 | 30 51 | eqeltrd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 53 |  | eqid | ⊢ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) | 
						
							| 54 | 1 2 53 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) )  →  ( ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 55 | 20 17 29 52 54 | syl13anc | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 56 | 55 | simpld | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 57 | 19 56 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  𝐶 ) | 
						
							| 58 |  | elssuni | ⊢ ( ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  𝐶  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ⊆  ∪  𝐶 ) | 
						
							| 59 | 57 58 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ⊆  ∪  𝐶 ) | 
						
							| 60 | 59 2 | sseqtrrdi | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ⊆  𝐵 ) | 
						
							| 61 | 1 | cvmsf1o | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  ∧  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) )  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) –1-1-onto→ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 62 | 20 17 56 61 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) –1-1-onto→ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 63 |  | f1ocnv | ⊢ ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) –1-1-onto→ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) –1-1-onto→ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 64 |  | f1of | ⊢ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) –1-1-onto→ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ⟶ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 65 | 62 63 64 | 3syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ⟶ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 66 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  𝑧  ∈  𝑊 ) | 
						
							| 67 | 1 2 3 4 5 6 7 8 9 10 11 16 13 66 | cvmliftlem3 | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 68 | 65 67 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) | 
						
							| 69 | 60 68 | sseldd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  𝐵 ) | 
						
							| 70 | 69 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑧  ∈  𝑊 )  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  𝐵 ) | 
						
							| 71 | 70 | fmpttd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) : 𝑊 ⟶ 𝐵 ) | 
						
							| 72 | 14 31 | syl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ℕ ) | 
						
							| 73 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem5 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 74 | 72 73 | syldan | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 75 | 74 | feq1d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑄 ‘ 𝑀 ) : 𝑊 ⟶ 𝐵  ↔  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) : 𝑊 ⟶ 𝐵 ) ) | 
						
							| 76 | 71 75 | mpbird | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑄 ‘ 𝑀 ) : 𝑊 ⟶ 𝐵 ) | 
						
							| 77 |  | fvres | ⊢ ( 𝑧  ∈  𝑊  →  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 78 | 66 77 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 79 |  | f1ocnvfv2 | ⊢ ( ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) : ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) –1-1-onto→ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( 𝐺 ‘ 𝑧 )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  →  ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 80 | 62 67 79 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝐺 ‘ 𝑧 ) ) | 
						
							| 81 |  | fvres | ⊢ ( ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  →  ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 82 | 68 81 | syl | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 83 | 78 80 82 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  ( 𝜓  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 ) ) | 
						
							| 84 | 83 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝜓 )  ∧  𝑧  ∈  𝑊 )  →  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 ) ) | 
						
							| 85 | 84 | mpteq2dva | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑧  ∈  𝑊  ↦  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) )  =  ( 𝑧  ∈  𝑊  ↦  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 86 | 4 22 23 | 3syl | ⊢ ( 𝜑  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 87 | 86 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 88 | 87 | feqmptd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐹  =  ( 𝑦  ∈  𝐵  ↦  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 89 |  | fveq2 | ⊢ ( 𝑦  =  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 90 | 70 74 88 89 | fmptco | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹  ∘  ( 𝑄 ‘ 𝑀 ) )  =  ( 𝑧  ∈  𝑊  ↦  ( 𝐹 ‘ ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ) | 
						
							| 91 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 92 | 91 3 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 93 | 5 92 | syl | ⊢ ( 𝜑  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 94 | 93 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 95 | 1 2 3 4 5 6 7 8 9 10 11 14 13 | cvmliftlem2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  ( 0 [,] 1 ) ) | 
						
							| 96 | 94 95 | fssresd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐺  ↾  𝑊 ) : 𝑊 ⟶ 𝑋 ) | 
						
							| 97 | 96 | feqmptd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐺  ↾  𝑊 )  =  ( 𝑧  ∈  𝑊  ↦  ( ( 𝐺  ↾  𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 98 | 85 90 97 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐹  ∘  ( 𝑄 ‘ 𝑀 ) )  =  ( 𝐺  ↾  𝑊 ) ) | 
						
							| 99 | 76 98 | jca | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑄 ‘ 𝑀 ) : 𝑊 ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 𝑀 ) )  =  ( 𝐺  ↾  𝑊 ) ) ) |