Metamath Proof Explorer


Theorem cvmliftlem6

Description: Lemma for cvmlift . Induction step for cvmliftlem7 . Assuming that Q ( M - 1 ) is defined at ( M - 1 ) / N and is a preimage of G ( ( M - 1 ) / N ) , the next segment Q ( M ) is also defined and is a function on W which is a lift G for this segment. This follows explicitly from the definition Q ( M ) =`' ( F |`I ) o. G since G is in 1st( FM ) for the entire interval so that ` ``' ( F |`I ) maps this into I and F o. Q maps back to G . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
cvmliftlem5.3 W = M 1 N M N
cvmliftlem6.1 φ ψ M 1 N
cvmliftlem6.2 φ ψ Q M 1 M 1 N F -1 G M 1 N
Assertion cvmliftlem6 φ ψ Q M : W B F Q M = G W

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 cvmliftlem5.3 W = M 1 N M N
14 cvmliftlem6.1 φ ψ M 1 N
15 cvmliftlem6.2 φ ψ Q M 1 M 1 N F -1 G M 1 N
16 14 adantrr φ ψ z W M 1 N
17 1 2 3 4 5 6 7 8 9 10 11 16 cvmliftlem1 φ ψ z W 2 nd T M S 1 st T M
18 1 cvmsss 2 nd T M S 1 st T M 2 nd T M C
19 17 18 syl φ ψ z W 2 nd T M C
20 4 adantr φ ψ z W F C CovMap J
21 15 adantrr φ ψ z W Q M 1 M 1 N F -1 G M 1 N
22 cvmcn F C CovMap J F C Cn J
23 2 3 cnf F C Cn J F : B X
24 20 22 23 3syl φ ψ z W F : B X
25 ffn F : B X F Fn B
26 fniniseg F Fn B Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
27 24 25 26 3syl φ ψ z W Q M 1 M 1 N F -1 G M 1 N Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
28 21 27 mpbid φ ψ z W Q M 1 M 1 N B F Q M 1 M 1 N = G M 1 N
29 28 simpld φ ψ z W Q M 1 M 1 N B
30 28 simprd φ ψ z W F Q M 1 M 1 N = G M 1 N
31 elfznn M 1 N M
32 16 31 syl φ ψ z W M
33 32 nnred φ ψ z W M
34 peano2rem M M 1
35 33 34 syl φ ψ z W M 1
36 8 adantr φ ψ z W N
37 35 36 nndivred φ ψ z W M 1 N
38 37 rexrd φ ψ z W M 1 N *
39 33 36 nndivred φ ψ z W M N
40 39 rexrd φ ψ z W M N *
41 33 ltm1d φ ψ z W M 1 < M
42 36 nnred φ ψ z W N
43 36 nngt0d φ ψ z W 0 < N
44 ltdiv1 M 1 M N 0 < N M 1 < M M 1 N < M N
45 35 33 42 43 44 syl112anc φ ψ z W M 1 < M M 1 N < M N
46 41 45 mpbid φ ψ z W M 1 N < M N
47 37 39 46 ltled φ ψ z W M 1 N M N
48 lbicc2 M 1 N * M N * M 1 N M N M 1 N M 1 N M N
49 38 40 47 48 syl3anc φ ψ z W M 1 N M 1 N M N
50 49 13 eleqtrrdi φ ψ z W M 1 N W
51 1 2 3 4 5 6 7 8 9 10 11 16 13 50 cvmliftlem3 φ ψ z W G M 1 N 1 st T M
52 30 51 eqeltrd φ ψ z W F Q M 1 M 1 N 1 st T M
53 eqid ι b 2 nd T M | Q M 1 M 1 N b = ι b 2 nd T M | Q M 1 M 1 N b
54 1 2 53 cvmsiota F C CovMap J 2 nd T M S 1 st T M Q M 1 M 1 N B F Q M 1 M 1 N 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
55 20 17 29 52 54 syl13anc φ ψ z W ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M Q M 1 M 1 N ι b 2 nd T M | Q M 1 M 1 N b
56 55 simpld φ ψ z W ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M
57 19 56 sseldd φ ψ z W ι b 2 nd T M | Q M 1 M 1 N b C
58 elssuni ι b 2 nd T M | Q M 1 M 1 N b C ι b 2 nd T M | Q M 1 M 1 N b C
59 57 58 syl φ ψ z W ι b 2 nd T M | Q M 1 M 1 N b C
60 59 2 sseqtrrdi φ ψ z W ι b 2 nd T M | Q M 1 M 1 N b B
61 1 cvmsf1o F C CovMap J 2 nd T M S 1 st T M ι b 2 nd T M | Q M 1 M 1 N b 2 nd T M F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M
62 20 17 56 61 syl3anc φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M
63 f1ocnv F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M F ι b 2 nd T M | Q M 1 M 1 N b -1 : 1 st T M 1-1 onto ι b 2 nd T M | Q M 1 M 1 N b
64 f1of F ι b 2 nd T M | Q M 1 M 1 N b -1 : 1 st T M 1-1 onto ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b -1 : 1 st T M ι b 2 nd T M | Q M 1 M 1 N b
65 62 63 64 3syl φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b -1 : 1 st T M ι b 2 nd T M | Q M 1 M 1 N b
66 simprr φ ψ z W z W
67 1 2 3 4 5 6 7 8 9 10 11 16 13 66 cvmliftlem3 φ ψ z W G z 1 st T M
68 65 67 ffvelrnd φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z ι b 2 nd T M | Q M 1 M 1 N b
69 60 68 sseldd φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z B
70 69 anassrs φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z B
71 70 fmpttd φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z : W B
72 14 31 syl φ ψ M
73 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem5 φ M Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
74 72 73 syldan φ ψ Q M = z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
75 74 feq1d φ ψ Q M : W B z W F ι b 2 nd T M | Q M 1 M 1 N b -1 G z : W B
76 71 75 mpbird φ ψ Q M : W B
77 fvres z W G W z = G z
78 66 77 syl φ ψ z W G W z = G z
79 f1ocnvfv2 F ι b 2 nd T M | Q M 1 M 1 N b : ι b 2 nd T M | Q M 1 M 1 N b 1-1 onto 1 st T M G z 1 st T M F ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = G z
80 62 67 79 syl2anc φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = G z
81 fvres F ι b 2 nd T M | Q M 1 M 1 N b -1 G z ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
82 68 81 syl φ ψ z W F ι b 2 nd T M | Q M 1 M 1 N b F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
83 78 80 82 3eqtr2rd φ ψ z W F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = G W z
84 83 anassrs φ ψ z W F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = G W z
85 84 mpteq2dva φ ψ z W F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z = z W G W z
86 4 22 23 3syl φ F : B X
87 86 adantr φ ψ F : B X
88 87 feqmptd φ ψ F = y B F y
89 fveq2 y = F ι b 2 nd T M | Q M 1 M 1 N b -1 G z F y = F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
90 70 74 88 89 fmptco φ ψ F Q M = z W F F ι b 2 nd T M | Q M 1 M 1 N b -1 G z
91 iiuni 0 1 = II
92 91 3 cnf G II Cn J G : 0 1 X
93 5 92 syl φ G : 0 1 X
94 93 adantr φ ψ G : 0 1 X
95 1 2 3 4 5 6 7 8 9 10 11 14 13 cvmliftlem2 φ ψ W 0 1
96 94 95 fssresd φ ψ G W : W X
97 96 feqmptd φ ψ G W = z W G W z
98 85 90 97 3eqtr4d φ ψ F Q M = G W
99 76 98 jca φ ψ Q M : W B F Q M = G W