Metamath Proof Explorer


Theorem cvmliftlem7

Description: Lemma for cvmlift . Prove by induction that every Q function is well-defined (we can immediately follow this theorem with cvmliftlem6 to show functionality and lifting of Q ). (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem5.3 W=M1NMN
Assertion cvmliftlem7 φM1NQM1M1NF-1GM1N

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem5.3 W=M1NMN
14 fzssp1 0N10N-1+1
15 8 nncnd φN
16 15 adantr φM1NN
17 ax-1cn 1
18 npcan N1N-1+1=N
19 16 17 18 sylancl φM1NN-1+1=N
20 19 oveq2d φM1N0N-1+1=0N
21 14 20 sseqtrid φM1N0N10N
22 simpr φM1NM1N
23 elfzelz M1NM
24 8 nnzd φN
25 elfzm1b MNM1NM10N1
26 23 24 25 syl2anr φM1NM1NM10N1
27 22 26 mpbid φM1NM10N1
28 21 27 sseldd φM1NM10N
29 elfznn0 M10NM10
30 29 adantl φM10NM10
31 eleq1 y=0y0N00N
32 fveq2 y=0Qy=Q0
33 oveq1 y=0yN=0N
34 32 33 fveq12d y=0QyyN=Q00N
35 fvoveq1 y=0GyN=G0N
36 35 sneqd y=0GyN=G0N
37 36 imaeq2d y=0F-1GyN=F-1G0N
38 34 37 eleq12d y=0QyyNF-1GyNQ00NF-1G0N
39 31 38 imbi12d y=0y0NQyyNF-1GyN00NQ00NF-1G0N
40 39 imbi2d y=0φy0NQyyNF-1GyNφ00NQ00NF-1G0N
41 eleq1 y=ny0Nn0N
42 fveq2 y=nQy=Qn
43 oveq1 y=nyN=nN
44 42 43 fveq12d y=nQyyN=QnnN
45 fvoveq1 y=nGyN=GnN
46 45 sneqd y=nGyN=GnN
47 46 imaeq2d y=nF-1GyN=F-1GnN
48 44 47 eleq12d y=nQyyNF-1GyNQnnNF-1GnN
49 41 48 imbi12d y=ny0NQyyNF-1GyNn0NQnnNF-1GnN
50 49 imbi2d y=nφy0NQyyNF-1GyNφn0NQnnNF-1GnN
51 eleq1 y=n+1y0Nn+10N
52 fveq2 y=n+1Qy=Qn+1
53 oveq1 y=n+1yN=n+1N
54 52 53 fveq12d y=n+1QyyN=Qn+1n+1N
55 fvoveq1 y=n+1GyN=Gn+1N
56 55 sneqd y=n+1GyN=Gn+1N
57 56 imaeq2d y=n+1F-1GyN=F-1Gn+1N
58 54 57 eleq12d y=n+1QyyNF-1GyNQn+1n+1NF-1Gn+1N
59 51 58 imbi12d y=n+1y0NQyyNF-1GyNn+10NQn+1n+1NF-1Gn+1N
60 59 imbi2d y=n+1φy0NQyyNF-1GyNφn+10NQn+1n+1NF-1Gn+1N
61 eleq1 y=M1y0NM10N
62 fveq2 y=M1Qy=QM1
63 oveq1 y=M1yN=M1N
64 62 63 fveq12d y=M1QyyN=QM1M1N
65 fvoveq1 y=M1GyN=GM1N
66 65 sneqd y=M1GyN=GM1N
67 66 imaeq2d y=M1F-1GyN=F-1GM1N
68 64 67 eleq12d y=M1QyyNF-1GyNQM1M1NF-1GM1N
69 61 68 imbi12d y=M1y0NQyyNF-1GyNM10NQM1M1NF-1GM1N
70 69 imbi2d y=M1φy0NQyyNF-1GyNφM10NQM1M1NF-1GM1N
71 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem4 Q0=0P
72 71 a1i φQ0=0P
73 8 nnne0d φN0
74 15 73 div0d φ0N=0
75 72 74 fveq12d φQ00N=0P0
76 0nn0 00
77 fvsng 00PB0P0=P
78 76 6 77 sylancr φ0P0=P
79 75 78 eqtrd φQ00N=P
80 74 fveq2d φG0N=G0
81 7 80 eqtr4d φFP=G0N
82 cvmcn FCCovMapJFCCnJ
83 4 82 syl φFCCnJ
84 2 3 cnf FCCnJF:BX
85 ffn F:BXFFnB
86 83 84 85 3syl φFFnB
87 fniniseg FFnBPF-1G0NPBFP=G0N
88 86 87 syl φPF-1G0NPBFP=G0N
89 6 81 88 mpbir2and φPF-1G0N
90 79 89 eqeltrd φQ00NF-1G0N
91 90 a1d φ00NQ00NF-1G0N
92 id n0n0
93 nn0uz 0=0
94 92 93 eleqtrdi n0n0
95 94 adantl φn0n0
96 peano2fzr n0n+10Nn0N
97 96 ex n0n+10Nn0N
98 95 97 syl φn0n+10Nn0N
99 98 imim1d φn0n0NQnnNF-1GnNn+10NQnnNF-1GnN
100 eqid n+1-1Nn+1N=n+1-1Nn+1N
101 simprlr φn0n+10NQnnNF-1GnNn+10N
102 elfzle2 n+10Nn+1N
103 101 102 syl φn0n+10NQnnNF-1GnNn+1N
104 simprll φn0n+10NQnnNF-1GnNn0
105 nn0p1nn n0n+1
106 104 105 syl φn0n+10NQnnNF-1GnNn+1
107 nnuz =1
108 106 107 eleqtrdi φn0n+10NQnnNF-1GnNn+11
109 24 adantr φn0n+10NQnnNF-1GnNN
110 elfz5 n+11Nn+11Nn+1N
111 108 109 110 syl2anc φn0n+10NQnnNF-1GnNn+11Nn+1N
112 103 111 mpbird φn0n+10NQnnNF-1GnNn+11N
113 simprr φn0n+10NQnnNF-1GnNQnnNF-1GnN
114 104 nn0cnd φn0n+10NQnnNF-1GnNn
115 pncan n1n+1-1=n
116 114 17 115 sylancl φn0n+10NQnnNF-1GnNn+1-1=n
117 116 fveq2d φn0n+10NQnnNF-1GnNQn+1-1=Qn
118 116 oveq1d φn0n+10NQnnNF-1GnNn+1-1N=nN
119 117 118 fveq12d φn0n+10NQnnNF-1GnNQn+1-1n+1-1N=QnnN
120 118 fveq2d φn0n+10NQnnNF-1GnNGn+1-1N=GnN
121 120 sneqd φn0n+10NQnnNF-1GnNGn+1-1N=GnN
122 121 imaeq2d φn0n+10NQnnNF-1GnNF-1Gn+1-1N=F-1GnN
123 113 119 122 3eltr4d φn0n+10NQnnNF-1GnNQn+1-1n+1-1NF-1Gn+1-1N
124 1 2 3 4 5 6 7 8 9 10 11 12 100 112 123 cvmliftlem6 φn0n+10NQnnNF-1GnNQn+1:n+1-1Nn+1NBFQn+1=Gn+1-1Nn+1N
125 124 simpld φn0n+10NQnnNF-1GnNQn+1:n+1-1Nn+1NB
126 104 nn0red φn0n+10NQnnNF-1GnNn
127 8 adantr φn0n+10NQnnNF-1GnNN
128 126 127 nndivred φn0n+10NQnnNF-1GnNnN
129 128 rexrd φn0n+10NQnnNF-1GnNnN*
130 peano2re nn+1
131 126 130 syl φn0n+10NQnnNF-1GnNn+1
132 131 127 nndivred φn0n+10NQnnNF-1GnNn+1N
133 132 rexrd φn0n+10NQnnNF-1GnNn+1N*
134 126 ltp1d φn0n+10NQnnNF-1GnNn<n+1
135 127 nnred φn0n+10NQnnNF-1GnNN
136 127 nngt0d φn0n+10NQnnNF-1GnN0<N
137 ltdiv1 nn+1N0<Nn<n+1nN<n+1N
138 126 131 135 136 137 syl112anc φn0n+10NQnnNF-1GnNn<n+1nN<n+1N
139 134 138 mpbid φn0n+10NQnnNF-1GnNnN<n+1N
140 128 132 139 ltled φn0n+10NQnnNF-1GnNnNn+1N
141 ubicc2 nN*n+1N*nNn+1Nn+1NnNn+1N
142 129 133 140 141 syl3anc φn0n+10NQnnNF-1GnNn+1NnNn+1N
143 118 oveq1d φn0n+10NQnnNF-1GnNn+1-1Nn+1N=nNn+1N
144 142 143 eleqtrrd φn0n+10NQnnNF-1GnNn+1Nn+1-1Nn+1N
145 125 144 ffvelcdmd φn0n+10NQnnNF-1GnNQn+1n+1NB
146 124 simprd φn0n+10NQnnNF-1GnNFQn+1=Gn+1-1Nn+1N
147 143 reseq2d φn0n+10NQnnNF-1GnNGn+1-1Nn+1N=GnNn+1N
148 146 147 eqtrd φn0n+10NQnnNF-1GnNFQn+1=GnNn+1N
149 148 fveq1d φn0n+10NQnnNF-1GnNFQn+1n+1N=GnNn+1Nn+1N
150 143 feq2d φn0n+10NQnnNF-1GnNQn+1:n+1-1Nn+1NBQn+1:nNn+1NB
151 125 150 mpbid φn0n+10NQnnNF-1GnNQn+1:nNn+1NB
152 fvco3 Qn+1:nNn+1NBn+1NnNn+1NFQn+1n+1N=FQn+1n+1N
153 151 142 152 syl2anc φn0n+10NQnnNF-1GnNFQn+1n+1N=FQn+1n+1N
154 fvres n+1NnNn+1NGnNn+1Nn+1N=Gn+1N
155 142 154 syl φn0n+10NQnnNF-1GnNGnNn+1Nn+1N=Gn+1N
156 149 153 155 3eqtr3d φn0n+10NQnnNF-1GnNFQn+1n+1N=Gn+1N
157 86 adantr φn0n+10NQnnNF-1GnNFFnB
158 fniniseg FFnBQn+1n+1NF-1Gn+1NQn+1n+1NBFQn+1n+1N=Gn+1N
159 157 158 syl φn0n+10NQnnNF-1GnNQn+1n+1NF-1Gn+1NQn+1n+1NBFQn+1n+1N=Gn+1N
160 145 156 159 mpbir2and φn0n+10NQnnNF-1GnNQn+1n+1NF-1Gn+1N
161 160 expr φn0n+10NQnnNF-1GnNQn+1n+1NF-1Gn+1N
162 99 161 animpimp2impd n0φn0NQnnNF-1GnNφn+10NQn+1n+1NF-1Gn+1N
163 40 50 60 70 91 162 nn0ind M10φM10NQM1M1NF-1GM1N
164 163 impd M10φM10NQM1M1NF-1GM1N
165 30 164 mpcom φM10NQM1M1NF-1GM1N
166 28 165 syldan φM1NQM1M1NF-1GM1N