| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem5.3 |  |-  W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) | 
						
							| 14 |  | fzssp1 |  |-  ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) | 
						
							| 15 | 8 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> N e. CC ) | 
						
							| 17 |  | ax-1cn |  |-  1 e. CC | 
						
							| 18 |  | npcan |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 19 | 16 17 18 | sylancl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( N - 1 ) + 1 ) = N ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) | 
						
							| 21 | 14 20 | sseqtrid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) | 
						
							| 22 |  | simpr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) | 
						
							| 23 |  | elfzelz |  |-  ( M e. ( 1 ... N ) -> M e. ZZ ) | 
						
							| 24 | 8 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 25 |  | elfzm1b |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( 1 ... N ) <-> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 26 | 23 24 25 | syl2anr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M e. ( 1 ... N ) <-> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) | 
						
							| 27 | 22 26 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) | 
						
							| 28 | 21 27 | sseldd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. ( 0 ... N ) ) | 
						
							| 29 |  | elfznn0 |  |-  ( ( M - 1 ) e. ( 0 ... N ) -> ( M - 1 ) e. NN0 ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( M - 1 ) e. NN0 ) | 
						
							| 31 |  | eleq1 |  |-  ( y = 0 -> ( y e. ( 0 ... N ) <-> 0 e. ( 0 ... N ) ) ) | 
						
							| 32 |  | fveq2 |  |-  ( y = 0 -> ( Q ` y ) = ( Q ` 0 ) ) | 
						
							| 33 |  | oveq1 |  |-  ( y = 0 -> ( y / N ) = ( 0 / N ) ) | 
						
							| 34 | 32 33 | fveq12d |  |-  ( y = 0 -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` 0 ) ` ( 0 / N ) ) ) | 
						
							| 35 |  | fvoveq1 |  |-  ( y = 0 -> ( G ` ( y / N ) ) = ( G ` ( 0 / N ) ) ) | 
						
							| 36 | 35 | sneqd |  |-  ( y = 0 -> { ( G ` ( y / N ) ) } = { ( G ` ( 0 / N ) ) } ) | 
						
							| 37 | 36 | imaeq2d |  |-  ( y = 0 -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( 0 / N ) ) } ) ) | 
						
							| 38 | 34 37 | eleq12d |  |-  ( y = 0 -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) | 
						
							| 39 | 31 38 | imbi12d |  |-  ( y = 0 -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) ) | 
						
							| 40 | 39 | imbi2d |  |-  ( y = 0 -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) ) ) | 
						
							| 41 |  | eleq1 |  |-  ( y = n -> ( y e. ( 0 ... N ) <-> n e. ( 0 ... N ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( y = n -> ( Q ` y ) = ( Q ` n ) ) | 
						
							| 43 |  | oveq1 |  |-  ( y = n -> ( y / N ) = ( n / N ) ) | 
						
							| 44 | 42 43 | fveq12d |  |-  ( y = n -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) | 
						
							| 45 |  | fvoveq1 |  |-  ( y = n -> ( G ` ( y / N ) ) = ( G ` ( n / N ) ) ) | 
						
							| 46 | 45 | sneqd |  |-  ( y = n -> { ( G ` ( y / N ) ) } = { ( G ` ( n / N ) ) } ) | 
						
							| 47 | 46 | imaeq2d |  |-  ( y = n -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( n / N ) ) } ) ) | 
						
							| 48 | 44 47 | eleq12d |  |-  ( y = n -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) | 
						
							| 49 | 41 48 | imbi12d |  |-  ( y = n -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) | 
						
							| 50 | 49 | imbi2d |  |-  ( y = n -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) ) | 
						
							| 51 |  | eleq1 |  |-  ( y = ( n + 1 ) -> ( y e. ( 0 ... N ) <-> ( n + 1 ) e. ( 0 ... N ) ) ) | 
						
							| 52 |  | fveq2 |  |-  ( y = ( n + 1 ) -> ( Q ` y ) = ( Q ` ( n + 1 ) ) ) | 
						
							| 53 |  | oveq1 |  |-  ( y = ( n + 1 ) -> ( y / N ) = ( ( n + 1 ) / N ) ) | 
						
							| 54 | 52 53 | fveq12d |  |-  ( y = ( n + 1 ) -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) | 
						
							| 55 |  | fvoveq1 |  |-  ( y = ( n + 1 ) -> ( G ` ( y / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) | 
						
							| 56 | 55 | sneqd |  |-  ( y = ( n + 1 ) -> { ( G ` ( y / N ) ) } = { ( G ` ( ( n + 1 ) / N ) ) } ) | 
						
							| 57 | 56 | imaeq2d |  |-  ( y = ( n + 1 ) -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) | 
						
							| 58 | 54 57 | eleq12d |  |-  ( y = ( n + 1 ) -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) | 
						
							| 59 | 51 58 | imbi12d |  |-  ( y = ( n + 1 ) -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) | 
						
							| 60 | 59 | imbi2d |  |-  ( y = ( n + 1 ) -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) ) | 
						
							| 61 |  | eleq1 |  |-  ( y = ( M - 1 ) -> ( y e. ( 0 ... N ) <-> ( M - 1 ) e. ( 0 ... N ) ) ) | 
						
							| 62 |  | fveq2 |  |-  ( y = ( M - 1 ) -> ( Q ` y ) = ( Q ` ( M - 1 ) ) ) | 
						
							| 63 |  | oveq1 |  |-  ( y = ( M - 1 ) -> ( y / N ) = ( ( M - 1 ) / N ) ) | 
						
							| 64 | 62 63 | fveq12d |  |-  ( y = ( M - 1 ) -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) | 
						
							| 65 |  | fvoveq1 |  |-  ( y = ( M - 1 ) -> ( G ` ( y / N ) ) = ( G ` ( ( M - 1 ) / N ) ) ) | 
						
							| 66 | 65 | sneqd |  |-  ( y = ( M - 1 ) -> { ( G ` ( y / N ) ) } = { ( G ` ( ( M - 1 ) / N ) ) } ) | 
						
							| 67 | 66 | imaeq2d |  |-  ( y = ( M - 1 ) -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) | 
						
							| 68 | 64 67 | eleq12d |  |-  ( y = ( M - 1 ) -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) | 
						
							| 69 | 61 68 | imbi12d |  |-  ( y = ( M - 1 ) -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) | 
						
							| 70 | 69 | imbi2d |  |-  ( y = ( M - 1 ) -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) ) | 
						
							| 71 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem4 |  |-  ( Q ` 0 ) = { <. 0 , P >. } | 
						
							| 72 | 71 | a1i |  |-  ( ph -> ( Q ` 0 ) = { <. 0 , P >. } ) | 
						
							| 73 | 8 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 74 | 15 73 | div0d |  |-  ( ph -> ( 0 / N ) = 0 ) | 
						
							| 75 | 72 74 | fveq12d |  |-  ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) = ( { <. 0 , P >. } ` 0 ) ) | 
						
							| 76 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 77 |  | fvsng |  |-  ( ( 0 e. NN0 /\ P e. B ) -> ( { <. 0 , P >. } ` 0 ) = P ) | 
						
							| 78 | 76 6 77 | sylancr |  |-  ( ph -> ( { <. 0 , P >. } ` 0 ) = P ) | 
						
							| 79 | 75 78 | eqtrd |  |-  ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) = P ) | 
						
							| 80 | 74 | fveq2d |  |-  ( ph -> ( G ` ( 0 / N ) ) = ( G ` 0 ) ) | 
						
							| 81 | 7 80 | eqtr4d |  |-  ( ph -> ( F ` P ) = ( G ` ( 0 / N ) ) ) | 
						
							| 82 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 83 | 4 82 | syl |  |-  ( ph -> F e. ( C Cn J ) ) | 
						
							| 84 | 2 3 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> X ) | 
						
							| 85 |  | ffn |  |-  ( F : B --> X -> F Fn B ) | 
						
							| 86 | 83 84 85 | 3syl |  |-  ( ph -> F Fn B ) | 
						
							| 87 |  | fniniseg |  |-  ( F Fn B -> ( P e. ( `' F " { ( G ` ( 0 / N ) ) } ) <-> ( P e. B /\ ( F ` P ) = ( G ` ( 0 / N ) ) ) ) ) | 
						
							| 88 | 86 87 | syl |  |-  ( ph -> ( P e. ( `' F " { ( G ` ( 0 / N ) ) } ) <-> ( P e. B /\ ( F ` P ) = ( G ` ( 0 / N ) ) ) ) ) | 
						
							| 89 | 6 81 88 | mpbir2and |  |-  ( ph -> P e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) | 
						
							| 90 | 79 89 | eqeltrd |  |-  ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) | 
						
							| 91 | 90 | a1d |  |-  ( ph -> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) | 
						
							| 92 |  | id |  |-  ( n e. NN0 -> n e. NN0 ) | 
						
							| 93 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 94 | 92 93 | eleqtrdi |  |-  ( n e. NN0 -> n e. ( ZZ>= ` 0 ) ) | 
						
							| 95 | 94 | adantl |  |-  ( ( ph /\ n e. NN0 ) -> n e. ( ZZ>= ` 0 ) ) | 
						
							| 96 |  | peano2fzr |  |-  ( ( n e. ( ZZ>= ` 0 ) /\ ( n + 1 ) e. ( 0 ... N ) ) -> n e. ( 0 ... N ) ) | 
						
							| 97 | 96 | ex |  |-  ( n e. ( ZZ>= ` 0 ) -> ( ( n + 1 ) e. ( 0 ... N ) -> n e. ( 0 ... N ) ) ) | 
						
							| 98 | 95 97 | syl |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) e. ( 0 ... N ) -> n e. ( 0 ... N ) ) ) | 
						
							| 99 | 98 | imim1d |  |-  ( ( ph /\ n e. NN0 ) -> ( ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) | 
						
							| 100 |  | eqid |  |-  ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) | 
						
							| 101 |  | simprlr |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( 0 ... N ) ) | 
						
							| 102 |  | elfzle2 |  |-  ( ( n + 1 ) e. ( 0 ... N ) -> ( n + 1 ) <_ N ) | 
						
							| 103 | 101 102 | syl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) <_ N ) | 
						
							| 104 |  | simprll |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. NN0 ) | 
						
							| 105 |  | nn0p1nn |  |-  ( n e. NN0 -> ( n + 1 ) e. NN ) | 
						
							| 106 | 104 105 | syl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. NN ) | 
						
							| 107 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 108 | 106 107 | eleqtrdi |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 109 | 24 | adantr |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. ZZ ) | 
						
							| 110 |  | elfz5 |  |-  ( ( ( n + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( n + 1 ) e. ( 1 ... N ) <-> ( n + 1 ) <_ N ) ) | 
						
							| 111 | 108 109 110 | syl2anc |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) e. ( 1 ... N ) <-> ( n + 1 ) <_ N ) ) | 
						
							| 112 | 103 111 | mpbird |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( 1 ... N ) ) | 
						
							| 113 |  | simprr |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) | 
						
							| 114 | 104 | nn0cnd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. CC ) | 
						
							| 115 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 116 | 114 17 115 | sylancl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 117 | 116 | fveq2d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( ( n + 1 ) - 1 ) ) = ( Q ` n ) ) | 
						
							| 118 | 116 | oveq1d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( n + 1 ) - 1 ) / N ) = ( n / N ) ) | 
						
							| 119 | 117 118 | fveq12d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) | 
						
							| 120 | 118 | fveq2d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( G ` ( n / N ) ) ) | 
						
							| 121 | 120 | sneqd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } = { ( G ` ( n / N ) ) } ) | 
						
							| 122 | 121 | imaeq2d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) = ( `' F " { ( G ` ( n / N ) ) } ) ) | 
						
							| 123 | 113 119 122 | 3eltr4d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) ) | 
						
							| 124 | 1 2 3 4 5 6 7 8 9 10 11 12 100 112 123 | cvmliftlem6 |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 125 | 124 | simpld |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B ) | 
						
							| 126 | 104 | nn0red |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. RR ) | 
						
							| 127 | 8 | adantr |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. NN ) | 
						
							| 128 | 126 127 | nndivred |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) e. RR ) | 
						
							| 129 | 128 | rexrd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) e. RR* ) | 
						
							| 130 |  | peano2re |  |-  ( n e. RR -> ( n + 1 ) e. RR ) | 
						
							| 131 | 126 130 | syl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. RR ) | 
						
							| 132 | 131 127 | nndivred |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. RR ) | 
						
							| 133 | 132 | rexrd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. RR* ) | 
						
							| 134 | 126 | ltp1d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n < ( n + 1 ) ) | 
						
							| 135 | 127 | nnred |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. RR ) | 
						
							| 136 | 127 | nngt0d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> 0 < N ) | 
						
							| 137 |  | ltdiv1 |  |-  ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) | 
						
							| 138 | 126 131 135 136 137 | syl112anc |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) | 
						
							| 139 | 134 138 | mpbid |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) < ( ( n + 1 ) / N ) ) | 
						
							| 140 | 128 132 139 | ltled |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) <_ ( ( n + 1 ) / N ) ) | 
						
							| 141 |  | ubicc2 |  |-  ( ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) -> ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 142 | 129 133 140 141 | syl3anc |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 143 | 118 | oveq1d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 144 | 142 143 | eleqtrrd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 145 | 125 144 | ffvelcdmd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B ) | 
						
							| 146 | 124 | simprd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 147 | 143 | reseq2d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 148 | 146 147 | eqtrd |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 149 | 148 | fveq1d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) ) | 
						
							| 150 | 143 | feq2d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B <-> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) ) | 
						
							| 151 | 125 150 | mpbid |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) | 
						
							| 152 |  | fvco3 |  |-  ( ( ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) ) | 
						
							| 153 | 151 142 152 | syl2anc |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) ) | 
						
							| 154 |  | fvres |  |-  ( ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) -> ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) | 
						
							| 155 | 142 154 | syl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) | 
						
							| 156 | 149 153 155 | 3eqtr3d |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) | 
						
							| 157 | 86 | adantr |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> F Fn B ) | 
						
							| 158 |  | fniniseg |  |-  ( F Fn B -> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) <-> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 159 | 157 158 | syl |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) <-> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 160 | 145 156 159 | mpbir2and |  |-  ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) | 
						
							| 161 | 160 | expr |  |-  ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) ) -> ( ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) | 
						
							| 162 | 99 161 | animpimp2impd |  |-  ( n e. NN0 -> ( ( ph -> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ph -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) ) | 
						
							| 163 | 40 50 60 70 91 162 | nn0ind |  |-  ( ( M - 1 ) e. NN0 -> ( ph -> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) | 
						
							| 164 | 163 | impd |  |-  ( ( M - 1 ) e. NN0 -> ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) | 
						
							| 165 | 30 164 | mpcom |  |-  ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) | 
						
							| 166 | 28 165 | syldan |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |