| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
| 13 |
|
cvmliftlem5.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
| 14 |
|
fzssp1 |
|- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
| 15 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. CC ) |
| 17 |
|
ax-1cn |
|- 1 e. CC |
| 18 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 19 |
16 17 18
|
sylancl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( N - 1 ) + 1 ) = N ) |
| 20 |
19
|
oveq2d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
| 21 |
14 20
|
sseqtrid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 22 |
|
simpr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) |
| 23 |
|
elfzelz |
|- ( M e. ( 1 ... N ) -> M e. ZZ ) |
| 24 |
8
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 25 |
|
elfzm1b |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. ( 1 ... N ) <-> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 26 |
23 24 25
|
syl2anr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M e. ( 1 ... N ) <-> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) ) |
| 27 |
22 26
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. ( 0 ... ( N - 1 ) ) ) |
| 28 |
21 27
|
sseldd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. ( 0 ... N ) ) |
| 29 |
|
elfznn0 |
|- ( ( M - 1 ) e. ( 0 ... N ) -> ( M - 1 ) e. NN0 ) |
| 30 |
29
|
adantl |
|- ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( M - 1 ) e. NN0 ) |
| 31 |
|
eleq1 |
|- ( y = 0 -> ( y e. ( 0 ... N ) <-> 0 e. ( 0 ... N ) ) ) |
| 32 |
|
fveq2 |
|- ( y = 0 -> ( Q ` y ) = ( Q ` 0 ) ) |
| 33 |
|
oveq1 |
|- ( y = 0 -> ( y / N ) = ( 0 / N ) ) |
| 34 |
32 33
|
fveq12d |
|- ( y = 0 -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` 0 ) ` ( 0 / N ) ) ) |
| 35 |
|
fvoveq1 |
|- ( y = 0 -> ( G ` ( y / N ) ) = ( G ` ( 0 / N ) ) ) |
| 36 |
35
|
sneqd |
|- ( y = 0 -> { ( G ` ( y / N ) ) } = { ( G ` ( 0 / N ) ) } ) |
| 37 |
36
|
imaeq2d |
|- ( y = 0 -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( 0 / N ) ) } ) ) |
| 38 |
34 37
|
eleq12d |
|- ( y = 0 -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) |
| 39 |
31 38
|
imbi12d |
|- ( y = 0 -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) ) |
| 40 |
39
|
imbi2d |
|- ( y = 0 -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) ) ) |
| 41 |
|
eleq1 |
|- ( y = n -> ( y e. ( 0 ... N ) <-> n e. ( 0 ... N ) ) ) |
| 42 |
|
fveq2 |
|- ( y = n -> ( Q ` y ) = ( Q ` n ) ) |
| 43 |
|
oveq1 |
|- ( y = n -> ( y / N ) = ( n / N ) ) |
| 44 |
42 43
|
fveq12d |
|- ( y = n -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
| 45 |
|
fvoveq1 |
|- ( y = n -> ( G ` ( y / N ) ) = ( G ` ( n / N ) ) ) |
| 46 |
45
|
sneqd |
|- ( y = n -> { ( G ` ( y / N ) ) } = { ( G ` ( n / N ) ) } ) |
| 47 |
46
|
imaeq2d |
|- ( y = n -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( n / N ) ) } ) ) |
| 48 |
44 47
|
eleq12d |
|- ( y = n -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) |
| 49 |
41 48
|
imbi12d |
|- ( y = n -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) |
| 50 |
49
|
imbi2d |
|- ( y = n -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) ) |
| 51 |
|
eleq1 |
|- ( y = ( n + 1 ) -> ( y e. ( 0 ... N ) <-> ( n + 1 ) e. ( 0 ... N ) ) ) |
| 52 |
|
fveq2 |
|- ( y = ( n + 1 ) -> ( Q ` y ) = ( Q ` ( n + 1 ) ) ) |
| 53 |
|
oveq1 |
|- ( y = ( n + 1 ) -> ( y / N ) = ( ( n + 1 ) / N ) ) |
| 54 |
52 53
|
fveq12d |
|- ( y = ( n + 1 ) -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) |
| 55 |
|
fvoveq1 |
|- ( y = ( n + 1 ) -> ( G ` ( y / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) |
| 56 |
55
|
sneqd |
|- ( y = ( n + 1 ) -> { ( G ` ( y / N ) ) } = { ( G ` ( ( n + 1 ) / N ) ) } ) |
| 57 |
56
|
imaeq2d |
|- ( y = ( n + 1 ) -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) |
| 58 |
54 57
|
eleq12d |
|- ( y = ( n + 1 ) -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) |
| 59 |
51 58
|
imbi12d |
|- ( y = ( n + 1 ) -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) |
| 60 |
59
|
imbi2d |
|- ( y = ( n + 1 ) -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) ) |
| 61 |
|
eleq1 |
|- ( y = ( M - 1 ) -> ( y e. ( 0 ... N ) <-> ( M - 1 ) e. ( 0 ... N ) ) ) |
| 62 |
|
fveq2 |
|- ( y = ( M - 1 ) -> ( Q ` y ) = ( Q ` ( M - 1 ) ) ) |
| 63 |
|
oveq1 |
|- ( y = ( M - 1 ) -> ( y / N ) = ( ( M - 1 ) / N ) ) |
| 64 |
62 63
|
fveq12d |
|- ( y = ( M - 1 ) -> ( ( Q ` y ) ` ( y / N ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) |
| 65 |
|
fvoveq1 |
|- ( y = ( M - 1 ) -> ( G ` ( y / N ) ) = ( G ` ( ( M - 1 ) / N ) ) ) |
| 66 |
65
|
sneqd |
|- ( y = ( M - 1 ) -> { ( G ` ( y / N ) ) } = { ( G ` ( ( M - 1 ) / N ) ) } ) |
| 67 |
66
|
imaeq2d |
|- ( y = ( M - 1 ) -> ( `' F " { ( G ` ( y / N ) ) } ) = ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |
| 68 |
64 67
|
eleq12d |
|- ( y = ( M - 1 ) -> ( ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) <-> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) |
| 69 |
61 68
|
imbi12d |
|- ( y = ( M - 1 ) -> ( ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) <-> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) |
| 70 |
69
|
imbi2d |
|- ( y = ( M - 1 ) -> ( ( ph -> ( y e. ( 0 ... N ) -> ( ( Q ` y ) ` ( y / N ) ) e. ( `' F " { ( G ` ( y / N ) ) } ) ) ) <-> ( ph -> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) ) |
| 71 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem4 |
|- ( Q ` 0 ) = { <. 0 , P >. } |
| 72 |
71
|
a1i |
|- ( ph -> ( Q ` 0 ) = { <. 0 , P >. } ) |
| 73 |
8
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 74 |
15 73
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
| 75 |
72 74
|
fveq12d |
|- ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) = ( { <. 0 , P >. } ` 0 ) ) |
| 76 |
|
0nn0 |
|- 0 e. NN0 |
| 77 |
|
fvsng |
|- ( ( 0 e. NN0 /\ P e. B ) -> ( { <. 0 , P >. } ` 0 ) = P ) |
| 78 |
76 6 77
|
sylancr |
|- ( ph -> ( { <. 0 , P >. } ` 0 ) = P ) |
| 79 |
75 78
|
eqtrd |
|- ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) = P ) |
| 80 |
74
|
fveq2d |
|- ( ph -> ( G ` ( 0 / N ) ) = ( G ` 0 ) ) |
| 81 |
7 80
|
eqtr4d |
|- ( ph -> ( F ` P ) = ( G ` ( 0 / N ) ) ) |
| 82 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
| 83 |
4 82
|
syl |
|- ( ph -> F e. ( C Cn J ) ) |
| 84 |
2 3
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> X ) |
| 85 |
|
ffn |
|- ( F : B --> X -> F Fn B ) |
| 86 |
83 84 85
|
3syl |
|- ( ph -> F Fn B ) |
| 87 |
|
fniniseg |
|- ( F Fn B -> ( P e. ( `' F " { ( G ` ( 0 / N ) ) } ) <-> ( P e. B /\ ( F ` P ) = ( G ` ( 0 / N ) ) ) ) ) |
| 88 |
86 87
|
syl |
|- ( ph -> ( P e. ( `' F " { ( G ` ( 0 / N ) ) } ) <-> ( P e. B /\ ( F ` P ) = ( G ` ( 0 / N ) ) ) ) ) |
| 89 |
6 81 88
|
mpbir2and |
|- ( ph -> P e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) |
| 90 |
79 89
|
eqeltrd |
|- ( ph -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) |
| 91 |
90
|
a1d |
|- ( ph -> ( 0 e. ( 0 ... N ) -> ( ( Q ` 0 ) ` ( 0 / N ) ) e. ( `' F " { ( G ` ( 0 / N ) ) } ) ) ) |
| 92 |
|
id |
|- ( n e. NN0 -> n e. NN0 ) |
| 93 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 94 |
92 93
|
eleqtrdi |
|- ( n e. NN0 -> n e. ( ZZ>= ` 0 ) ) |
| 95 |
94
|
adantl |
|- ( ( ph /\ n e. NN0 ) -> n e. ( ZZ>= ` 0 ) ) |
| 96 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` 0 ) /\ ( n + 1 ) e. ( 0 ... N ) ) -> n e. ( 0 ... N ) ) |
| 97 |
96
|
ex |
|- ( n e. ( ZZ>= ` 0 ) -> ( ( n + 1 ) e. ( 0 ... N ) -> n e. ( 0 ... N ) ) ) |
| 98 |
95 97
|
syl |
|- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) e. ( 0 ... N ) -> n e. ( 0 ... N ) ) ) |
| 99 |
98
|
imim1d |
|- ( ( ph /\ n e. NN0 ) -> ( ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) ) |
| 100 |
|
eqid |
|- ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) |
| 101 |
|
simprlr |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( 0 ... N ) ) |
| 102 |
|
elfzle2 |
|- ( ( n + 1 ) e. ( 0 ... N ) -> ( n + 1 ) <_ N ) |
| 103 |
101 102
|
syl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) <_ N ) |
| 104 |
|
simprll |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. NN0 ) |
| 105 |
|
nn0p1nn |
|- ( n e. NN0 -> ( n + 1 ) e. NN ) |
| 106 |
104 105
|
syl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. NN ) |
| 107 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 108 |
106 107
|
eleqtrdi |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( ZZ>= ` 1 ) ) |
| 109 |
24
|
adantr |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. ZZ ) |
| 110 |
|
elfz5 |
|- ( ( ( n + 1 ) e. ( ZZ>= ` 1 ) /\ N e. ZZ ) -> ( ( n + 1 ) e. ( 1 ... N ) <-> ( n + 1 ) <_ N ) ) |
| 111 |
108 109 110
|
syl2anc |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) e. ( 1 ... N ) <-> ( n + 1 ) <_ N ) ) |
| 112 |
103 111
|
mpbird |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. ( 1 ... N ) ) |
| 113 |
|
simprr |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) |
| 114 |
104
|
nn0cnd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. CC ) |
| 115 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
| 116 |
114 17 115
|
sylancl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) - 1 ) = n ) |
| 117 |
116
|
fveq2d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( ( n + 1 ) - 1 ) ) = ( Q ` n ) ) |
| 118 |
116
|
oveq1d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( n + 1 ) - 1 ) / N ) = ( n / N ) ) |
| 119 |
117 118
|
fveq12d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
| 120 |
118
|
fveq2d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( G ` ( n / N ) ) ) |
| 121 |
120
|
sneqd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } = { ( G ` ( n / N ) ) } ) |
| 122 |
121
|
imaeq2d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) = ( `' F " { ( G ` ( n / N ) ) } ) ) |
| 123 |
113 119 122
|
3eltr4d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) ) |
| 124 |
1 2 3 4 5 6 7 8 9 10 11 12 100 112 123
|
cvmliftlem6 |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 125 |
124
|
simpld |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
| 126 |
104
|
nn0red |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n e. RR ) |
| 127 |
8
|
adantr |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. NN ) |
| 128 |
126 127
|
nndivred |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) e. RR ) |
| 129 |
128
|
rexrd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) e. RR* ) |
| 130 |
|
peano2re |
|- ( n e. RR -> ( n + 1 ) e. RR ) |
| 131 |
126 130
|
syl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n + 1 ) e. RR ) |
| 132 |
131 127
|
nndivred |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. RR ) |
| 133 |
132
|
rexrd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. RR* ) |
| 134 |
126
|
ltp1d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> n < ( n + 1 ) ) |
| 135 |
127
|
nnred |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> N e. RR ) |
| 136 |
127
|
nngt0d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> 0 < N ) |
| 137 |
|
ltdiv1 |
|- ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
| 138 |
126 131 135 136 137
|
syl112anc |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
| 139 |
134 138
|
mpbid |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) < ( ( n + 1 ) / N ) ) |
| 140 |
128 132 139
|
ltled |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( n / N ) <_ ( ( n + 1 ) / N ) ) |
| 141 |
|
ubicc2 |
|- ( ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) -> ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 142 |
129 133 140 141
|
syl3anc |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 143 |
118
|
oveq1d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 144 |
142 143
|
eleqtrrd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( n + 1 ) / N ) e. ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 145 |
125 144
|
ffvelcdmd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B ) |
| 146 |
124
|
simprd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 147 |
143
|
reseq2d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 148 |
146 147
|
eqtrd |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 149 |
148
|
fveq1d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) ) |
| 150 |
143
|
feq2d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B <-> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) ) |
| 151 |
125 150
|
mpbid |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
| 152 |
|
fvco3 |
|- ( ( ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) ) |
| 153 |
151 142 152
|
syl2anc |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( F o. ( Q ` ( n + 1 ) ) ) ` ( ( n + 1 ) / N ) ) = ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) ) |
| 154 |
|
fvres |
|- ( ( ( n + 1 ) / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) -> ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) |
| 155 |
142 154
|
syl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ` ( ( n + 1 ) / N ) ) = ( G ` ( ( n + 1 ) / N ) ) ) |
| 156 |
149 153 155
|
3eqtr3d |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) |
| 157 |
86
|
adantr |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> F Fn B ) |
| 158 |
|
fniniseg |
|- ( F Fn B -> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) <-> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) ) ) |
| 159 |
157 158
|
syl |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) <-> ( ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) ) = ( G ` ( ( n + 1 ) / N ) ) ) ) ) |
| 160 |
145 156 159
|
mpbir2and |
|- ( ( ph /\ ( ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) /\ ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) |
| 161 |
160
|
expr |
|- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) e. ( 0 ... N ) ) ) -> ( ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) |
| 162 |
99 161
|
animpimp2impd |
|- ( n e. NN0 -> ( ( ph -> ( n e. ( 0 ... N ) -> ( ( Q ` n ) ` ( n / N ) ) e. ( `' F " { ( G ` ( n / N ) ) } ) ) ) -> ( ph -> ( ( n + 1 ) e. ( 0 ... N ) -> ( ( Q ` ( n + 1 ) ) ` ( ( n + 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n + 1 ) / N ) ) } ) ) ) ) ) |
| 163 |
40 50 60 70 91 162
|
nn0ind |
|- ( ( M - 1 ) e. NN0 -> ( ph -> ( ( M - 1 ) e. ( 0 ... N ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) ) |
| 164 |
163
|
impd |
|- ( ( M - 1 ) e. NN0 -> ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) ) |
| 165 |
30 164
|
mpcom |
|- ( ( ph /\ ( M - 1 ) e. ( 0 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |
| 166 |
28 165
|
syldan |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |