| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem5.3 |  |-  W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) | 
						
							| 14 |  | elfznn |  |-  ( M e. ( 1 ... N ) -> M e. NN ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem5 |  |-  ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 16 | 14 15 | sylan2 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 17 | 4 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> F e. ( C CovMap J ) ) | 
						
							| 18 |  | cvmtop1 |  |-  ( F e. ( C CovMap J ) -> C e. Top ) | 
						
							| 19 |  | cnrest2r |  |-  ( C e. Top -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) | 
						
							| 21 |  | retopon |  |-  ( topGen ` ran (,) ) e. ( TopOn ` RR ) | 
						
							| 22 | 11 21 | eqeltri |  |-  L e. ( TopOn ` RR ) | 
						
							| 23 |  | simpr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 23 13 | cvmliftlem2 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ ( 0 [,] 1 ) ) | 
						
							| 25 |  | unitssre |  |-  ( 0 [,] 1 ) C_ RR | 
						
							| 26 | 24 25 | sstrdi |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ RR ) | 
						
							| 27 |  | resttopon |  |-  ( ( L e. ( TopOn ` RR ) /\ W C_ RR ) -> ( L |`t W ) e. ( TopOn ` W ) ) | 
						
							| 28 | 22 26 27 | sylancr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( L |`t W ) e. ( TopOn ` W ) ) | 
						
							| 29 |  | eqid |  |-  ( II |`t W ) = ( II |`t W ) | 
						
							| 30 |  | iitopon |  |-  II e. ( TopOn ` ( 0 [,] 1 ) ) | 
						
							| 31 | 30 | a1i |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) | 
						
							| 32 | 5 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> G e. ( II Cn J ) ) | 
						
							| 33 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 34 | 33 3 | cnf |  |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 35 | 32 34 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 36 | 35 | feqmptd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> G = ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) ) | 
						
							| 37 | 36 32 | eqeltrrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) e. ( II Cn J ) ) | 
						
							| 38 | 29 31 24 37 | cnmpt1res |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( II |`t W ) Cn J ) ) | 
						
							| 39 |  | dfii2 |  |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) | 
						
							| 40 | 11 | oveq1i |  |-  ( L |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) | 
						
							| 41 | 39 40 | eqtr4i |  |-  II = ( L |`t ( 0 [,] 1 ) ) | 
						
							| 42 | 41 | oveq1i |  |-  ( II |`t W ) = ( ( L |`t ( 0 [,] 1 ) ) |`t W ) | 
						
							| 43 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 44 | 11 43 | eqeltri |  |-  L e. Top | 
						
							| 45 | 44 | a1i |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> L e. Top ) | 
						
							| 46 |  | ovexd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 [,] 1 ) e. _V ) | 
						
							| 47 |  | restabs |  |-  ( ( L e. Top /\ W C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) e. _V ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) | 
						
							| 48 | 45 24 46 47 | syl3anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) | 
						
							| 49 | 42 48 | eqtrid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( II |`t W ) = ( L |`t W ) ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( II |`t W ) Cn J ) = ( ( L |`t W ) Cn J ) ) | 
						
							| 51 | 38 50 | eleqtrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) ) | 
						
							| 52 |  | cvmtop2 |  |-  ( F e. ( C CovMap J ) -> J e. Top ) | 
						
							| 53 | 17 52 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> J e. Top ) | 
						
							| 54 | 3 | toptopon |  |-  ( J e. Top <-> J e. ( TopOn ` X ) ) | 
						
							| 55 | 53 54 | sylib |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> J e. ( TopOn ` X ) ) | 
						
							| 56 |  | simprl |  |-  ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> M e. ( 1 ... N ) ) | 
						
							| 57 |  | simprr |  |-  ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> z e. W ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 56 13 57 | cvmliftlem3 |  |-  ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 59 | 58 | anassrs |  |-  ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z e. W ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 60 | 59 | fmpttd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) : W --> ( 1st ` ( T ` M ) ) ) | 
						
							| 61 | 60 | frnd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 23 | cvmliftlem1 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) | 
						
							| 63 | 1 | cvmsrcl |  |-  ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) -> ( 1st ` ( T ` M ) ) e. J ) | 
						
							| 64 |  | elssuni |  |-  ( ( 1st ` ( T ` M ) ) e. J -> ( 1st ` ( T ` M ) ) C_ U. J ) | 
						
							| 65 | 62 63 64 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ U. J ) | 
						
							| 66 | 65 3 | sseqtrrdi |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ X ) | 
						
							| 67 |  | cnrest2 |  |-  ( ( J e. ( TopOn ` X ) /\ ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) /\ ( 1st ` ( T ` M ) ) C_ X ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) | 
						
							| 68 | 55 61 66 67 | syl3anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) | 
						
							| 69 | 51 68 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) | 
						
							| 70 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem7 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) | 
						
							| 71 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 72 | 2 3 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> X ) | 
						
							| 73 | 17 71 72 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> F : B --> X ) | 
						
							| 74 |  | ffn |  |-  ( F : B --> X -> F Fn B ) | 
						
							| 75 |  | fniniseg |  |-  ( F Fn B -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) | 
						
							| 76 | 73 74 75 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) | 
						
							| 77 | 70 76 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 78 | 77 | simpld |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B ) | 
						
							| 79 | 77 | simprd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) | 
						
							| 80 | 14 | adantl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. NN ) | 
						
							| 81 | 80 | nnred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. RR ) | 
						
							| 82 |  | peano2rem |  |-  ( M e. RR -> ( M - 1 ) e. RR ) | 
						
							| 83 | 81 82 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. RR ) | 
						
							| 84 | 8 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> N e. NN ) | 
						
							| 85 | 83 84 | nndivred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR ) | 
						
							| 86 | 85 | rexrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR* ) | 
						
							| 87 | 81 84 | nndivred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR ) | 
						
							| 88 | 87 | rexrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR* ) | 
						
							| 89 | 81 | ltm1d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) < M ) | 
						
							| 90 | 84 | nnred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> N e. RR ) | 
						
							| 91 | 84 | nngt0d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> 0 < N ) | 
						
							| 92 |  | ltdiv1 |  |-  ( ( ( M - 1 ) e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) | 
						
							| 93 | 83 81 90 91 92 | syl112anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) | 
						
							| 94 | 89 93 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) < ( M / N ) ) | 
						
							| 95 | 85 87 94 | ltled |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) <_ ( M / N ) ) | 
						
							| 96 |  | lbicc2 |  |-  ( ( ( ( M - 1 ) / N ) e. RR* /\ ( M / N ) e. RR* /\ ( ( M - 1 ) / N ) <_ ( M / N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) | 
						
							| 97 | 86 88 95 96 | syl3anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) | 
						
							| 98 | 97 13 | eleqtrrdi |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. W ) | 
						
							| 99 | 1 2 3 4 5 6 7 8 9 10 11 23 13 98 | cvmliftlem3 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( G ` ( ( M - 1 ) / N ) ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 100 | 79 99 | eqeltrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 101 |  | eqid |  |-  ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) | 
						
							| 102 | 1 2 101 | cvmsiota |  |-  ( ( F e. ( C CovMap J ) /\ ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) | 
						
							| 103 | 17 62 78 100 102 | syl13anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) | 
						
							| 104 | 103 | simpld |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) | 
						
							| 105 | 1 | cvmshmeo |  |-  ( ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) | 
						
							| 106 | 62 104 105 | syl2anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) | 
						
							| 107 |  | hmeocnvcn |  |-  ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) | 
						
							| 108 | 106 107 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) | 
						
							| 109 | 28 69 108 | cnmpt11f |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) | 
						
							| 110 | 20 109 | sseldd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn C ) ) | 
						
							| 111 | 16 110 | eqeltrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) e. ( ( L |`t W ) Cn C ) ) |