| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
| 13 |
|
cvmliftlem5.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
| 14 |
|
elfznn |
|- ( M e. ( 1 ... N ) -> M e. NN ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem5 |
|- ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 16 |
14 15
|
sylan2 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
| 17 |
4
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F e. ( C CovMap J ) ) |
| 18 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
| 19 |
|
cnrest2r |
|- ( C e. Top -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) |
| 20 |
17 18 19
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) |
| 21 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
| 22 |
11 21
|
eqeltri |
|- L e. ( TopOn ` RR ) |
| 23 |
|
simpr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) |
| 24 |
1 2 3 4 5 6 7 8 9 10 11 23 13
|
cvmliftlem2 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ ( 0 [,] 1 ) ) |
| 25 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
| 26 |
24 25
|
sstrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ RR ) |
| 27 |
|
resttopon |
|- ( ( L e. ( TopOn ` RR ) /\ W C_ RR ) -> ( L |`t W ) e. ( TopOn ` W ) ) |
| 28 |
22 26 27
|
sylancr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( L |`t W ) e. ( TopOn ` W ) ) |
| 29 |
|
eqid |
|- ( II |`t W ) = ( II |`t W ) |
| 30 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
| 31 |
30
|
a1i |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
| 32 |
5
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G e. ( II Cn J ) ) |
| 33 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
| 34 |
33 3
|
cnf |
|- ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) |
| 35 |
32 34
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G : ( 0 [,] 1 ) --> X ) |
| 36 |
35
|
feqmptd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G = ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) ) |
| 37 |
36 32
|
eqeltrrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) e. ( II Cn J ) ) |
| 38 |
29 31 24 37
|
cnmpt1res |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( II |`t W ) Cn J ) ) |
| 39 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 40 |
11
|
oveq1i |
|- ( L |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
| 41 |
39 40
|
eqtr4i |
|- II = ( L |`t ( 0 [,] 1 ) ) |
| 42 |
41
|
oveq1i |
|- ( II |`t W ) = ( ( L |`t ( 0 [,] 1 ) ) |`t W ) |
| 43 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 44 |
11 43
|
eqeltri |
|- L e. Top |
| 45 |
44
|
a1i |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> L e. Top ) |
| 46 |
|
ovexd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 [,] 1 ) e. _V ) |
| 47 |
|
restabs |
|- ( ( L e. Top /\ W C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) e. _V ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) |
| 48 |
45 24 46 47
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) |
| 49 |
42 48
|
eqtrid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( II |`t W ) = ( L |`t W ) ) |
| 50 |
49
|
oveq1d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( II |`t W ) Cn J ) = ( ( L |`t W ) Cn J ) ) |
| 51 |
38 50
|
eleqtrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) ) |
| 52 |
|
cvmtop2 |
|- ( F e. ( C CovMap J ) -> J e. Top ) |
| 53 |
17 52
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> J e. Top ) |
| 54 |
3
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
| 55 |
53 54
|
sylib |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> J e. ( TopOn ` X ) ) |
| 56 |
|
simprl |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> M e. ( 1 ... N ) ) |
| 57 |
|
simprr |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> z e. W ) |
| 58 |
1 2 3 4 5 6 7 8 9 10 11 56 13 57
|
cvmliftlem3 |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) |
| 59 |
58
|
anassrs |
|- ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z e. W ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) |
| 60 |
59
|
fmpttd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) : W --> ( 1st ` ( T ` M ) ) ) |
| 61 |
60
|
frnd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) ) |
| 62 |
1 2 3 4 5 6 7 8 9 10 11 23
|
cvmliftlem1 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |
| 63 |
1
|
cvmsrcl |
|- ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) -> ( 1st ` ( T ` M ) ) e. J ) |
| 64 |
|
elssuni |
|- ( ( 1st ` ( T ` M ) ) e. J -> ( 1st ` ( T ` M ) ) C_ U. J ) |
| 65 |
62 63 64
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ U. J ) |
| 66 |
65 3
|
sseqtrrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ X ) |
| 67 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` X ) /\ ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) /\ ( 1st ` ( T ` M ) ) C_ X ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) |
| 68 |
55 61 66 67
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) |
| 69 |
51 68
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
| 70 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem7 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |
| 71 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
| 72 |
2 3
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> X ) |
| 73 |
17 71 72
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F : B --> X ) |
| 74 |
|
ffn |
|- ( F : B --> X -> F Fn B ) |
| 75 |
|
fniniseg |
|- ( F Fn B -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
| 76 |
73 74 75
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
| 77 |
70 76
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) |
| 78 |
77
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B ) |
| 79 |
77
|
simprd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) |
| 80 |
14
|
adantl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. NN ) |
| 81 |
80
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. RR ) |
| 82 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
| 83 |
81 82
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. RR ) |
| 84 |
8
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. NN ) |
| 85 |
83 84
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR ) |
| 86 |
85
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR* ) |
| 87 |
81 84
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR ) |
| 88 |
87
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR* ) |
| 89 |
81
|
ltm1d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) < M ) |
| 90 |
84
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. RR ) |
| 91 |
84
|
nngt0d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> 0 < N ) |
| 92 |
|
ltdiv1 |
|- ( ( ( M - 1 ) e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
| 93 |
83 81 90 91 92
|
syl112anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
| 94 |
89 93
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) < ( M / N ) ) |
| 95 |
85 87 94
|
ltled |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) <_ ( M / N ) ) |
| 96 |
|
lbicc2 |
|- ( ( ( ( M - 1 ) / N ) e. RR* /\ ( M / N ) e. RR* /\ ( ( M - 1 ) / N ) <_ ( M / N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
| 97 |
86 88 95 96
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
| 98 |
97 13
|
eleqtrrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. W ) |
| 99 |
1 2 3 4 5 6 7 8 9 10 11 23 13 98
|
cvmliftlem3 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( G ` ( ( M - 1 ) / N ) ) e. ( 1st ` ( T ` M ) ) ) |
| 100 |
79 99
|
eqeltrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) |
| 101 |
|
eqid |
|- ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) |
| 102 |
1 2 101
|
cvmsiota |
|- ( ( F e. ( C CovMap J ) /\ ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
| 103 |
17 62 78 100 102
|
syl13anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
| 104 |
103
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) |
| 105 |
1
|
cvmshmeo |
|- ( ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
| 106 |
62 104 105
|
syl2anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
| 107 |
|
hmeocnvcn |
|- ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
| 108 |
106 107
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
| 109 |
28 69 108
|
cnmpt11f |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
| 110 |
20 109
|
sseldd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn C ) ) |
| 111 |
16 110
|
eqeltrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) e. ( ( L |`t W ) Cn C ) ) |