Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
cvmliftlem5.3 |
|- W = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
14 |
|
elfznn |
|- ( M e. ( 1 ... N ) -> M e. NN ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem5 |
|- ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
16 |
14 15
|
sylan2 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) = ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
17 |
4
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F e. ( C CovMap J ) ) |
18 |
|
cvmtop1 |
|- ( F e. ( C CovMap J ) -> C e. Top ) |
19 |
|
cnrest2r |
|- ( C e. Top -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) |
20 |
17 18 19
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) C_ ( ( L |`t W ) Cn C ) ) |
21 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
22 |
11 21
|
eqeltri |
|- L e. ( TopOn ` RR ) |
23 |
|
simpr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 23 13
|
cvmliftlem2 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ ( 0 [,] 1 ) ) |
25 |
|
unitssre |
|- ( 0 [,] 1 ) C_ RR |
26 |
24 25
|
sstrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> W C_ RR ) |
27 |
|
resttopon |
|- ( ( L e. ( TopOn ` RR ) /\ W C_ RR ) -> ( L |`t W ) e. ( TopOn ` W ) ) |
28 |
22 26 27
|
sylancr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( L |`t W ) e. ( TopOn ` W ) ) |
29 |
|
eqid |
|- ( II |`t W ) = ( II |`t W ) |
30 |
|
iitopon |
|- II e. ( TopOn ` ( 0 [,] 1 ) ) |
31 |
30
|
a1i |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> II e. ( TopOn ` ( 0 [,] 1 ) ) ) |
32 |
5
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G e. ( II Cn J ) ) |
33 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
34 |
33 3
|
cnf |
|- ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) |
35 |
32 34
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G : ( 0 [,] 1 ) --> X ) |
36 |
35
|
feqmptd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> G = ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) ) |
37 |
36 32
|
eqeltrrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. ( 0 [,] 1 ) |-> ( G ` z ) ) e. ( II Cn J ) ) |
38 |
29 31 24 37
|
cnmpt1res |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( II |`t W ) Cn J ) ) |
39 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
40 |
11
|
oveq1i |
|- ( L |`t ( 0 [,] 1 ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
41 |
39 40
|
eqtr4i |
|- II = ( L |`t ( 0 [,] 1 ) ) |
42 |
41
|
oveq1i |
|- ( II |`t W ) = ( ( L |`t ( 0 [,] 1 ) ) |`t W ) |
43 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
44 |
11 43
|
eqeltri |
|- L e. Top |
45 |
44
|
a1i |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> L e. Top ) |
46 |
|
ovexd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 0 [,] 1 ) e. _V ) |
47 |
|
restabs |
|- ( ( L e. Top /\ W C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) e. _V ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) |
48 |
45 24 46 47
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( L |`t ( 0 [,] 1 ) ) |`t W ) = ( L |`t W ) ) |
49 |
42 48
|
syl5eq |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( II |`t W ) = ( L |`t W ) ) |
50 |
49
|
oveq1d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( II |`t W ) Cn J ) = ( ( L |`t W ) Cn J ) ) |
51 |
38 50
|
eleqtrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) ) |
52 |
|
cvmtop2 |
|- ( F e. ( C CovMap J ) -> J e. Top ) |
53 |
17 52
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> J e. Top ) |
54 |
3
|
toptopon |
|- ( J e. Top <-> J e. ( TopOn ` X ) ) |
55 |
53 54
|
sylib |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> J e. ( TopOn ` X ) ) |
56 |
|
simprl |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> M e. ( 1 ... N ) ) |
57 |
|
simprr |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> z e. W ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 56 13 57
|
cvmliftlem3 |
|- ( ( ph /\ ( M e. ( 1 ... N ) /\ z e. W ) ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) |
59 |
58
|
anassrs |
|- ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z e. W ) -> ( G ` z ) e. ( 1st ` ( T ` M ) ) ) |
60 |
59
|
fmpttd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) : W --> ( 1st ` ( T ` M ) ) ) |
61 |
60
|
frnd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 23
|
cvmliftlem1 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |
63 |
1
|
cvmsrcl |
|- ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) -> ( 1st ` ( T ` M ) ) e. J ) |
64 |
|
elssuni |
|- ( ( 1st ` ( T ` M ) ) e. J -> ( 1st ` ( T ` M ) ) C_ U. J ) |
65 |
62 63 64
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ U. J ) |
66 |
65 3
|
sseqtrrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 1st ` ( T ` M ) ) C_ X ) |
67 |
|
cnrest2 |
|- ( ( J e. ( TopOn ` X ) /\ ran ( z e. W |-> ( G ` z ) ) C_ ( 1st ` ( T ` M ) ) /\ ( 1st ` ( T ` M ) ) C_ X ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) |
68 |
55 61 66 67
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn J ) <-> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) ) |
69 |
51 68
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( G ` z ) ) e. ( ( L |`t W ) Cn ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
70 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem7 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |
71 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
72 |
2 3
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> X ) |
73 |
17 71 72
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F : B --> X ) |
74 |
|
ffn |
|- ( F : B --> X -> F Fn B ) |
75 |
|
fniniseg |
|- ( F Fn B -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
76 |
73 74 75
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
77 |
70 76
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) |
78 |
77
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B ) |
79 |
77
|
simprd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) |
80 |
14
|
adantl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. NN ) |
81 |
80
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. RR ) |
82 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
83 |
81 82
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. RR ) |
84 |
8
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. NN ) |
85 |
83 84
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR ) |
86 |
85
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR* ) |
87 |
81 84
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR ) |
88 |
87
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR* ) |
89 |
81
|
ltm1d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) < M ) |
90 |
84
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. RR ) |
91 |
84
|
nngt0d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> 0 < N ) |
92 |
|
ltdiv1 |
|- ( ( ( M - 1 ) e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
93 |
83 81 90 91 92
|
syl112anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
94 |
89 93
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) < ( M / N ) ) |
95 |
85 87 94
|
ltled |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) <_ ( M / N ) ) |
96 |
|
lbicc2 |
|- ( ( ( ( M - 1 ) / N ) e. RR* /\ ( M / N ) e. RR* /\ ( ( M - 1 ) / N ) <_ ( M / N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
97 |
86 88 95 96
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
98 |
97 13
|
eleqtrrdi |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. W ) |
99 |
1 2 3 4 5 6 7 8 9 10 11 23 13 98
|
cvmliftlem3 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( G ` ( ( M - 1 ) / N ) ) e. ( 1st ` ( T ` M ) ) ) |
100 |
79 99
|
eqeltrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) |
101 |
|
eqid |
|- ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) |
102 |
1 2 101
|
cvmsiota |
|- ( ( F e. ( C CovMap J ) /\ ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
103 |
17 62 78 100 102
|
syl13anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
104 |
103
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) |
105 |
1
|
cvmshmeo |
|- ( ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
106 |
62 104 105
|
syl2anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) ) |
107 |
|
hmeocnvcn |
|- ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) Homeo ( J |`t ( 1st ` ( T ` M ) ) ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
108 |
106 107
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) e. ( ( J |`t ( 1st ` ( T ` M ) ) ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
109 |
28 69 108
|
cnmpt11f |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn ( C |`t ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) ) |
110 |
20 109
|
sseldd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( z e. W |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) e. ( ( L |`t W ) Cn C ) ) |
111 |
16 110
|
eqeltrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) e. ( ( L |`t W ) Cn C ) ) |