| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem5.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | elfznn | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  𝑀  ∈  ℕ ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem5 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ℕ )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 16 | 14 15 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑀 )  =  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 18 |  | cvmtop1 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐶  ∈  Top ) | 
						
							| 19 |  | cnrest2r | ⊢ ( 𝐶  ∈  Top  →  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) )  ⊆  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐶 ) ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) )  ⊆  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐶 ) ) | 
						
							| 21 |  | retopon | ⊢ ( topGen ‘ ran  (,) )  ∈  ( TopOn ‘ ℝ ) | 
						
							| 22 | 11 21 | eqeltri | ⊢ 𝐿  ∈  ( TopOn ‘ ℝ ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 9 10 11 23 13 | cvmliftlem2 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑊  ⊆  ( 0 [,] 1 ) ) | 
						
							| 25 |  | unitssre | ⊢ ( 0 [,] 1 )  ⊆  ℝ | 
						
							| 26 | 24 25 | sstrdi | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑊  ⊆  ℝ ) | 
						
							| 27 |  | resttopon | ⊢ ( ( 𝐿  ∈  ( TopOn ‘ ℝ )  ∧  𝑊  ⊆  ℝ )  →  ( 𝐿  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 ) ) | 
						
							| 28 | 22 26 27 | sylancr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐿  ↾t  𝑊 )  ∈  ( TopOn ‘ 𝑊 ) ) | 
						
							| 29 |  | eqid | ⊢ ( II  ↾t  𝑊 )  =  ( II  ↾t  𝑊 ) | 
						
							| 30 |  | iitopon | ⊢ II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) | 
						
							| 31 | 30 | a1i | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  II  ∈  ( TopOn ‘ ( 0 [,] 1 ) ) ) | 
						
							| 32 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 33 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 34 | 33 3 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 35 | 32 34 | syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 36 | 35 | feqmptd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐺  =  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 37 | 36 32 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  ( 0 [,] 1 )  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 38 | 29 31 24 37 | cnmpt1res | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( II  ↾t  𝑊 )  Cn  𝐽 ) ) | 
						
							| 39 |  | dfii2 | ⊢ II  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 40 | 11 | oveq1i | ⊢ ( 𝐿  ↾t  ( 0 [,] 1 ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 41 | 39 40 | eqtr4i | ⊢ II  =  ( 𝐿  ↾t  ( 0 [,] 1 ) ) | 
						
							| 42 | 41 | oveq1i | ⊢ ( II  ↾t  𝑊 )  =  ( ( 𝐿  ↾t  ( 0 [,] 1 ) )  ↾t  𝑊 ) | 
						
							| 43 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 44 | 11 43 | eqeltri | ⊢ 𝐿  ∈  Top | 
						
							| 45 | 44 | a1i | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐿  ∈  Top ) | 
						
							| 46 |  | ovexd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 0 [,] 1 )  ∈  V ) | 
						
							| 47 |  | restabs | ⊢ ( ( 𝐿  ∈  Top  ∧  𝑊  ⊆  ( 0 [,] 1 )  ∧  ( 0 [,] 1 )  ∈  V )  →  ( ( 𝐿  ↾t  ( 0 [,] 1 ) )  ↾t  𝑊 )  =  ( 𝐿  ↾t  𝑊 ) ) | 
						
							| 48 | 45 24 46 47 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝐿  ↾t  ( 0 [,] 1 ) )  ↾t  𝑊 )  =  ( 𝐿  ↾t  𝑊 ) ) | 
						
							| 49 | 42 48 | eqtrid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( II  ↾t  𝑊 )  =  ( 𝐿  ↾t  𝑊 ) ) | 
						
							| 50 | 49 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( II  ↾t  𝑊 )  Cn  𝐽 )  =  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐽 ) ) | 
						
							| 51 | 38 50 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐽 ) ) | 
						
							| 52 |  | cvmtop2 | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 53 | 17 52 | syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐽  ∈  Top ) | 
						
							| 54 | 3 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 55 | 53 54 | sylib | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 56 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( 1 ... 𝑁 )  ∧  𝑧  ∈  𝑊 ) )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 57 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( 1 ... 𝑁 )  ∧  𝑧  ∈  𝑊 ) )  →  𝑧  ∈  𝑊 ) | 
						
							| 58 | 1 2 3 4 5 6 7 8 9 10 11 56 13 57 | cvmliftlem3 | ⊢ ( ( 𝜑  ∧  ( 𝑀  ∈  ( 1 ... 𝑁 )  ∧  𝑧  ∈  𝑊 ) )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 59 | 58 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  ∧  𝑧  ∈  𝑊 )  →  ( 𝐺 ‘ 𝑧 )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 60 | 59 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) ) : 𝑊 ⟶ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 61 | 60 | frnd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ran  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 62 | 1 2 3 4 5 6 7 8 9 10 11 23 | cvmliftlem1 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 63 | 1 | cvmsrcl | ⊢ ( ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  →  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  𝐽 ) | 
						
							| 64 |  | elssuni | ⊢ ( ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  𝐽  →  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  ∪  𝐽 ) | 
						
							| 65 | 62 63 64 | 3syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  ∪  𝐽 ) | 
						
							| 66 | 65 3 | sseqtrrdi | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  𝑋 ) | 
						
							| 67 |  | cnrest2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ran  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) )  ⊆  𝑋 )  →  ( ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐽 )  ↔  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 68 | 55 61 66 67 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐽 )  ↔  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) ) | 
						
							| 69 | 51 68 | mpbid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( 𝐺 ‘ 𝑧 ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) | 
						
							| 70 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem7 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 71 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 72 | 2 3 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 73 | 17 71 72 | 3syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 74 |  | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ 𝑋  →  𝐹  Fn  𝐵 ) | 
						
							| 75 |  | fniniseg | ⊢ ( 𝐹  Fn  𝐵  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 76 | 73 74 75 | 3syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 77 | 70 76 | mpbid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) ) | 
						
							| 78 | 77 | simpld | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵 ) | 
						
							| 79 | 77 | simprd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) | 
						
							| 80 | 14 | adantl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  ℕ ) | 
						
							| 81 | 80 | nnred | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 82 |  | peano2rem | ⊢ ( 𝑀  ∈  ℝ  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 83 | 81 82 | syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  −  1 )  ∈  ℝ ) | 
						
							| 84 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ℕ ) | 
						
							| 85 | 83 84 | nndivred | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 86 | 85 | rexrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ* ) | 
						
							| 87 | 81 84 | nndivred | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  /  𝑁 )  ∈  ℝ ) | 
						
							| 88 | 87 | rexrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  /  𝑁 )  ∈  ℝ* ) | 
						
							| 89 | 81 | ltm1d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  −  1 )  <  𝑀 ) | 
						
							| 90 | 84 | nnred | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 91 | 84 | nngt0d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  0  <  𝑁 ) | 
						
							| 92 |  | ltdiv1 | ⊢ ( ( ( 𝑀  −  1 )  ∈  ℝ  ∧  𝑀  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) ) | 
						
							| 93 | 83 81 90 91 92 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  <  𝑀  ↔  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) ) | 
						
							| 94 | 89 93 | mpbid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  <  ( 𝑀  /  𝑁 ) ) | 
						
							| 95 | 85 87 94 | ltled | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ≤  ( 𝑀  /  𝑁 ) ) | 
						
							| 96 |  | lbicc2 | ⊢ ( ( ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ℝ*  ∧  ( 𝑀  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑀  −  1 )  /  𝑁 )  ≤  ( 𝑀  /  𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 97 | 86 88 95 96 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 98 | 97 13 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑀  −  1 )  /  𝑁 )  ∈  𝑊 ) | 
						
							| 99 | 1 2 3 4 5 6 7 8 9 10 11 23 13 98 | cvmliftlem3 | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 100 | 79 99 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 101 |  | eqid | ⊢ ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) | 
						
							| 102 | 1 2 101 | cvmsiota | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) )  →  ( ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 103 | 17 62 78 100 102 | syl13anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∧  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) | 
						
							| 104 | 103 | simpld | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 105 | 1 | cvmshmeo | ⊢ ( ( ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) )  ∈  ( 𝑆 ‘ ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  ∧  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 )  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) )  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) Homeo ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) | 
						
							| 106 | 62 104 105 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) Homeo ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) | 
						
							| 107 |  | hmeocnvcn | ⊢ ( ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  ∈  ( ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) Homeo ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  ∈  ( ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  Cn  ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) ) | 
						
							| 108 | 106 107 | syl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) )  ∈  ( ( 𝐽  ↾t  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) )  Cn  ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) ) | 
						
							| 109 | 28 69 108 | cnmpt11f | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  ( 𝐶  ↾t  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ) ) | 
						
							| 110 | 20 109 | sseldd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑧  ∈  𝑊  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐶 ) ) | 
						
							| 111 | 16 110 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 𝑀 )  ∈  ( ( 𝐿  ↾t  𝑊 )  Cn  𝐶 ) ) |