Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem5.3 |
⊢ 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) |
14 |
|
elfznn |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀 ∈ ℕ ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem5 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℕ ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
16 |
14 15
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑀 ) = ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) |
17 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
18 |
|
cvmtop1 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐶 ∈ Top ) |
19 |
|
cnrest2r |
⊢ ( 𝐶 ∈ Top → ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) ⊆ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐶 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) ⊆ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐶 ) ) |
21 |
|
retopon |
⊢ ( topGen ‘ ran (,) ) ∈ ( TopOn ‘ ℝ ) |
22 |
11 21
|
eqeltri |
⊢ 𝐿 ∈ ( TopOn ‘ ℝ ) |
23 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 23 13
|
cvmliftlem2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑊 ⊆ ( 0 [,] 1 ) ) |
25 |
|
unitssre |
⊢ ( 0 [,] 1 ) ⊆ ℝ |
26 |
24 25
|
sstrdi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑊 ⊆ ℝ ) |
27 |
|
resttopon |
⊢ ( ( 𝐿 ∈ ( TopOn ‘ ℝ ) ∧ 𝑊 ⊆ ℝ ) → ( 𝐿 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) |
28 |
22 26 27
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝐿 ↾t 𝑊 ) ∈ ( TopOn ‘ 𝑊 ) ) |
29 |
|
eqid |
⊢ ( II ↾t 𝑊 ) = ( II ↾t 𝑊 ) |
30 |
|
iitopon |
⊢ II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) |
31 |
30
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → II ∈ ( TopOn ‘ ( 0 [,] 1 ) ) ) |
32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐺 ∈ ( II Cn 𝐽 ) ) |
33 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
34 |
33 3
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
35 |
32 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
36 |
35
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐺 = ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
37 |
36 32
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ ( 0 [,] 1 ) ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( II Cn 𝐽 ) ) |
38 |
29 31 24 37
|
cnmpt1res |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( II ↾t 𝑊 ) Cn 𝐽 ) ) |
39 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
40 |
11
|
oveq1i |
⊢ ( 𝐿 ↾t ( 0 [,] 1 ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
41 |
39 40
|
eqtr4i |
⊢ II = ( 𝐿 ↾t ( 0 [,] 1 ) ) |
42 |
41
|
oveq1i |
⊢ ( II ↾t 𝑊 ) = ( ( 𝐿 ↾t ( 0 [,] 1 ) ) ↾t 𝑊 ) |
43 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
44 |
11 43
|
eqeltri |
⊢ 𝐿 ∈ Top |
45 |
44
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐿 ∈ Top ) |
46 |
|
ovexd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 0 [,] 1 ) ∈ V ) |
47 |
|
restabs |
⊢ ( ( 𝐿 ∈ Top ∧ 𝑊 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ∈ V ) → ( ( 𝐿 ↾t ( 0 [,] 1 ) ) ↾t 𝑊 ) = ( 𝐿 ↾t 𝑊 ) ) |
48 |
45 24 46 47
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝐿 ↾t ( 0 [,] 1 ) ) ↾t 𝑊 ) = ( 𝐿 ↾t 𝑊 ) ) |
49 |
42 48
|
syl5eq |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( II ↾t 𝑊 ) = ( 𝐿 ↾t 𝑊 ) ) |
50 |
49
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( II ↾t 𝑊 ) Cn 𝐽 ) = ( ( 𝐿 ↾t 𝑊 ) Cn 𝐽 ) ) |
51 |
38 50
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐽 ) ) |
52 |
|
cvmtop2 |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐽 ∈ Top ) |
53 |
17 52
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐽 ∈ Top ) |
54 |
3
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
55 |
53 54
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
56 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝑊 ) ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
57 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝑊 ) ) → 𝑧 ∈ 𝑊 ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 56 13 57
|
cvmliftlem3 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( 1 ... 𝑁 ) ∧ 𝑧 ∈ 𝑊 ) ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
59 |
58
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) ∧ 𝑧 ∈ 𝑊 ) → ( 𝐺 ‘ 𝑧 ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
60 |
59
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) : 𝑊 ⟶ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
61 |
60
|
frnd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ran ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 23
|
cvmliftlem1 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ ( 𝑆 ‘ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) |
63 |
1
|
cvmsrcl |
⊢ ( ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ ( 𝑆 ‘ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) → ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐽 ) |
64 |
|
elssuni |
⊢ ( ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ 𝐽 → ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ⊆ ∪ 𝐽 ) |
65 |
62 63 64
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ⊆ ∪ 𝐽 ) |
66 |
65 3
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ⊆ 𝑋 ) |
67 |
|
cnrest2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ∧ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ⊆ 𝑋 ) → ( ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐽 ) ↔ ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) ) |
68 |
55 61 66 67
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐽 ) ↔ ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) ) |
69 |
51 68
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( 𝐺 ‘ 𝑧 ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) |
70 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem7 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) |
71 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
72 |
2 3
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ 𝑋 ) |
73 |
17 71 72
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝐹 : 𝐵 ⟶ 𝑋 ) |
74 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ 𝑋 → 𝐹 Fn 𝐵 ) |
75 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐵 → ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ↔ ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) ) ) |
76 |
73 74 75
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ↔ ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) ) ) |
77 |
70 76
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) ) |
78 |
77
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝐵 ) |
79 |
77
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) |
80 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ ℕ ) |
81 |
80
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ ℝ ) |
82 |
|
peano2rem |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 1 ) ∈ ℝ ) |
83 |
81 82
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 − 1 ) ∈ ℝ ) |
84 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℕ ) |
85 |
83 84
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ∈ ℝ ) |
86 |
85
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ∈ ℝ* ) |
87 |
81 84
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 / 𝑁 ) ∈ ℝ ) |
88 |
87
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 / 𝑁 ) ∈ ℝ* ) |
89 |
81
|
ltm1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 − 1 ) < 𝑀 ) |
90 |
84
|
nnred |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℝ ) |
91 |
84
|
nngt0d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 0 < 𝑁 ) |
92 |
|
ltdiv1 |
⊢ ( ( ( 𝑀 − 1 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( ( 𝑀 − 1 ) / 𝑁 ) < ( 𝑀 / 𝑁 ) ) ) |
93 |
83 81 90 91 92
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) < 𝑀 ↔ ( ( 𝑀 − 1 ) / 𝑁 ) < ( 𝑀 / 𝑁 ) ) ) |
94 |
89 93
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) < ( 𝑀 / 𝑁 ) ) |
95 |
85 87 94
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ≤ ( 𝑀 / 𝑁 ) ) |
96 |
|
lbicc2 |
⊢ ( ( ( ( 𝑀 − 1 ) / 𝑁 ) ∈ ℝ* ∧ ( 𝑀 / 𝑁 ) ∈ ℝ* ∧ ( ( 𝑀 − 1 ) / 𝑁 ) ≤ ( 𝑀 / 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ∈ ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ) |
97 |
86 88 95 96
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ∈ ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ) |
98 |
97 13
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑀 − 1 ) / 𝑁 ) ∈ 𝑊 ) |
99 |
1 2 3 4 5 6 7 8 9 10 11 23 13 98
|
cvmliftlem3 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
100 |
79 99
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
101 |
|
eqid |
⊢ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) = ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) |
102 |
1 2 101
|
cvmsiota |
⊢ ( ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ∧ ( ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ ( 𝑆 ‘ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ∧ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) → ( ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∧ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) |
103 |
17 62 78 100 102
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∧ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) |
104 |
103
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
105 |
1
|
cvmshmeo |
⊢ ( ( ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ∈ ( 𝑆 ‘ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ∧ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ) → ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) Homeo ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) |
106 |
62 104 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) Homeo ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) ) |
107 |
|
hmeocnvcn |
⊢ ( ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ∈ ( ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) Homeo ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) → ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ∈ ( ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) Cn ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) ) |
108 |
106 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ∈ ( ( 𝐽 ↾t ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) Cn ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) ) |
109 |
28 69 108
|
cnmpt11f |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn ( 𝐶 ↾t ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ) ) |
110 |
20 109
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑧 ∈ 𝑊 ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑀 ) ) ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐶 ) ) |
111 |
16 110
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑄 ‘ 𝑀 ) ∈ ( ( 𝐿 ↾t 𝑊 ) Cn 𝐶 ) ) |