Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem1.m |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
13 |
|
cvmliftlem3.3 |
⊢ 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) |
14 |
|
cvmliftlem3.m |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐴 ∈ 𝑊 ) |
15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 − 1 ) = ( 𝑀 − 1 ) ) |
17 |
16
|
oveq1d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝑘 − 1 ) / 𝑁 ) = ( ( 𝑀 − 1 ) / 𝑁 ) ) |
18 |
|
oveq1 |
⊢ ( 𝑘 = 𝑀 → ( 𝑘 / 𝑁 ) = ( 𝑀 / 𝑁 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( 𝑘 = 𝑀 → ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) ) |
20 |
19 13
|
eqtr4di |
⊢ ( 𝑘 = 𝑀 → ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) = 𝑊 ) |
21 |
20
|
imaeq2d |
⊢ ( 𝑘 = 𝑀 → ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) = ( 𝐺 “ 𝑊 ) ) |
22 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑀 → ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) = ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
23 |
21 22
|
sseq12d |
⊢ ( 𝑘 = 𝑀 → ( ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ↔ ( 𝐺 “ 𝑊 ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) |
24 |
23
|
rspcv |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) → ( 𝐺 “ 𝑊 ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) |
25 |
12 15 24
|
sylc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 “ 𝑊 ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |
26 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
27 |
26 3
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
28 |
5 27
|
syl |
⊢ ( 𝜑 → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
30 |
29
|
ffund |
⊢ ( ( 𝜑 ∧ 𝜓 ) → Fun 𝐺 ) |
31 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem2 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ⊆ ( 0 [,] 1 ) ) |
32 |
29
|
fdmd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → dom 𝐺 = ( 0 [,] 1 ) ) |
33 |
31 32
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝑊 ⊆ dom 𝐺 ) |
34 |
|
funfvima2 |
⊢ ( ( Fun 𝐺 ∧ 𝑊 ⊆ dom 𝐺 ) → ( 𝐴 ∈ 𝑊 → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 “ 𝑊 ) ) ) |
35 |
30 33 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐴 ∈ 𝑊 → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 “ 𝑊 ) ) ) |
36 |
14 35
|
mpd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝐴 ) ∈ ( 𝐺 “ 𝑊 ) ) |
37 |
25 36
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝐺 ‘ 𝐴 ) ∈ ( 1st ‘ ( 𝑇 ‘ 𝑀 ) ) ) |