Metamath Proof Explorer


Theorem cvmliftlem3

Description: Lemma for cvmlift . Since 1st( TM ) is a neighborhood of ( G " W ) , every element A e. W satisfies ( GA ) e. ( 1st( TM ) ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem1.m ( ( 𝜑𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) )
cvmliftlem3.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
cvmliftlem3.m ( ( 𝜑𝜓 ) → 𝐴𝑊 )
Assertion cvmliftlem3 ( ( 𝜑𝜓 ) → ( 𝐺𝐴 ) ∈ ( 1st ‘ ( 𝑇𝑀 ) ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem1.m ( ( 𝜑𝜓 ) → 𝑀 ∈ ( 1 ... 𝑁 ) )
13 cvmliftlem3.3 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) )
14 cvmliftlem3.m ( ( 𝜑𝜓 ) → 𝐴𝑊 )
15 10 adantr ( ( 𝜑𝜓 ) → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
16 oveq1 ( 𝑘 = 𝑀 → ( 𝑘 − 1 ) = ( 𝑀 − 1 ) )
17 16 oveq1d ( 𝑘 = 𝑀 → ( ( 𝑘 − 1 ) / 𝑁 ) = ( ( 𝑀 − 1 ) / 𝑁 ) )
18 oveq1 ( 𝑘 = 𝑀 → ( 𝑘 / 𝑁 ) = ( 𝑀 / 𝑁 ) )
19 17 18 oveq12d ( 𝑘 = 𝑀 → ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) )
20 19 13 eqtr4di ( 𝑘 = 𝑀 → ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) = 𝑊 )
21 20 imaeq2d ( 𝑘 = 𝑀 → ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) = ( 𝐺𝑊 ) )
22 2fveq3 ( 𝑘 = 𝑀 → ( 1st ‘ ( 𝑇𝑘 ) ) = ( 1st ‘ ( 𝑇𝑀 ) ) )
23 21 22 sseq12d ( 𝑘 = 𝑀 → ( ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) ↔ ( 𝐺𝑊 ) ⊆ ( 1st ‘ ( 𝑇𝑀 ) ) ) )
24 23 rspcv ( 𝑀 ∈ ( 1 ... 𝑁 ) → ( ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) → ( 𝐺𝑊 ) ⊆ ( 1st ‘ ( 𝑇𝑀 ) ) ) )
25 12 15 24 sylc ( ( 𝜑𝜓 ) → ( 𝐺𝑊 ) ⊆ ( 1st ‘ ( 𝑇𝑀 ) ) )
26 iiuni ( 0 [,] 1 ) = II
27 26 3 cnf ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 )
28 5 27 syl ( 𝜑𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 )
29 28 adantr ( ( 𝜑𝜓 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 )
30 29 ffund ( ( 𝜑𝜓 ) → Fun 𝐺 )
31 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem2 ( ( 𝜑𝜓 ) → 𝑊 ⊆ ( 0 [,] 1 ) )
32 29 fdmd ( ( 𝜑𝜓 ) → dom 𝐺 = ( 0 [,] 1 ) )
33 31 32 sseqtrrd ( ( 𝜑𝜓 ) → 𝑊 ⊆ dom 𝐺 )
34 funfvima2 ( ( Fun 𝐺𝑊 ⊆ dom 𝐺 ) → ( 𝐴𝑊 → ( 𝐺𝐴 ) ∈ ( 𝐺𝑊 ) ) )
35 30 33 34 syl2anc ( ( 𝜑𝜓 ) → ( 𝐴𝑊 → ( 𝐺𝐴 ) ∈ ( 𝐺𝑊 ) ) )
36 14 35 mpd ( ( 𝜑𝜓 ) → ( 𝐺𝐴 ) ∈ ( 𝐺𝑊 ) )
37 25 36 sseldd ( ( 𝜑𝜓 ) → ( 𝐺𝐴 ) ∈ ( 1st ‘ ( 𝑇𝑀 ) ) )