| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem1.m | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 13 |  | cvmliftlem3.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | cvmliftlem3.m | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  ∈  𝑊 ) | 
						
							| 15 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 16 |  | oveq1 | ⊢ ( 𝑘  =  𝑀  →  ( 𝑘  −  1 )  =  ( 𝑀  −  1 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝑘  −  1 )  /  𝑁 )  =  ( ( 𝑀  −  1 )  /  𝑁 ) ) | 
						
							| 18 |  | oveq1 | ⊢ ( 𝑘  =  𝑀  →  ( 𝑘  /  𝑁 )  =  ( 𝑀  /  𝑁 ) ) | 
						
							| 19 | 17 18 | oveq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) )  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) ) | 
						
							| 20 | 19 13 | eqtr4di | ⊢ ( 𝑘  =  𝑀  →  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) )  =  𝑊 ) | 
						
							| 21 | 20 | imaeq2d | ⊢ ( 𝑘  =  𝑀  →  ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  =  ( 𝐺  “  𝑊 ) ) | 
						
							| 22 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑀  →  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) )  =  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 23 | 21 22 | sseq12d | ⊢ ( 𝑘  =  𝑀  →  ( ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) )  ↔  ( 𝐺  “  𝑊 )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 24 | 23 | rspcv | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  ( ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) )  →  ( 𝐺  “  𝑊 )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) ) | 
						
							| 25 | 12 15 24 | sylc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐺  “  𝑊 )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) | 
						
							| 26 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 27 | 26 3 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 28 | 5 27 | syl | ⊢ ( 𝜑  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 30 | 29 | ffund | ⊢ ( ( 𝜑  ∧  𝜓 )  →  Fun  𝐺 ) | 
						
							| 31 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem2 | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  ( 0 [,] 1 ) ) | 
						
							| 32 | 29 | fdmd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  dom  𝐺  =  ( 0 [,] 1 ) ) | 
						
							| 33 | 31 32 | sseqtrrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑊  ⊆  dom  𝐺 ) | 
						
							| 34 |  | funfvima2 | ⊢ ( ( Fun  𝐺  ∧  𝑊  ⊆  dom  𝐺 )  →  ( 𝐴  ∈  𝑊  →  ( 𝐺 ‘ 𝐴 )  ∈  ( 𝐺  “  𝑊 ) ) ) | 
						
							| 35 | 30 33 34 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐴  ∈  𝑊  →  ( 𝐺 ‘ 𝐴 )  ∈  ( 𝐺  “  𝑊 ) ) ) | 
						
							| 36 | 14 35 | mpd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐺 ‘ 𝐴 )  ∈  ( 𝐺  “  𝑊 ) ) | 
						
							| 37 | 25 36 | sseldd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐺 ‘ 𝐴 )  ∈  ( 1st  ‘ ( 𝑇 ‘ 𝑀 ) ) ) |