Metamath Proof Explorer


Theorem cvmliftlem4

Description: Lemma for cvmlift . The function Q will be our lifted path, defined piecewise on each section [ ( M - 1 ) / N , M / N ] for M e. ( 1 ... N ) . For M = 0 , it is a "seed" value which makes the rest of the recursion work, a singleton function mapping 0 to P . (Contributed by Mario Carneiro, 15-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
Assertion cvmliftlem4 ( 𝑄 ‘ 0 ) = { ⟨ 0 , 𝑃 ⟩ }

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
13 12 fveq1i ( 𝑄 ‘ 0 ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 0 )
14 0z 0 ∈ ℤ
15 seq1 ( 0 ∈ ℤ → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 0 ) )
16 14 15 ax-mp ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ) ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 0 )
17 13 16 eqtri ( 𝑄 ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 0 )
18 fnresi ( I ↾ ℕ ) Fn ℕ
19 c0ex 0 ∈ V
20 snex { ⟨ 0 , 𝑃 ⟩ } ∈ V
21 19 20 fnsn { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } Fn { 0 }
22 0nnn ¬ 0 ∈ ℕ
23 disjsn ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ )
24 22 23 mpbir ( ℕ ∩ { 0 } ) = ∅
25 19 snid 0 ∈ { 0 }
26 24 25 pm3.2i ( ( ℕ ∩ { 0 } ) = ∅ ∧ 0 ∈ { 0 } )
27 fvun2 ( ( ( I ↾ ℕ ) Fn ℕ ∧ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } Fn { 0 } ∧ ( ( ℕ ∩ { 0 } ) = ∅ ∧ 0 ∈ { 0 } ) ) → ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 0 ) = ( { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ‘ 0 ) )
28 18 21 26 27 mp3an ( ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) ‘ 0 ) = ( { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ‘ 0 )
29 17 28 eqtri ( 𝑄 ‘ 0 ) = ( { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ‘ 0 )
30 19 20 fvsn ( { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ‘ 0 ) = { ⟨ 0 , 𝑃 ⟩ }
31 29 30 eqtri ( 𝑄 ‘ 0 ) = { ⟨ 0 , 𝑃 ⟩ }