| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 | 12 | fveq1i | ⊢ ( 𝑄 ‘ 0 )  =  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 0 ) | 
						
							| 14 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 15 |  | seq1 | ⊢ ( 0  ∈  ℤ  →  ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 0 )  =  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 0 ) ) | 
						
							| 16 | 14 15 | ax-mp | ⊢ ( seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 0 )  =  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 0 ) | 
						
							| 17 | 13 16 | eqtri | ⊢ ( 𝑄 ‘ 0 )  =  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 0 ) | 
						
							| 18 |  | fnresi | ⊢ (  I   ↾  ℕ )  Fn  ℕ | 
						
							| 19 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 20 |  | snex | ⊢ { 〈 0 ,  𝑃 〉 }  ∈  V | 
						
							| 21 | 19 20 | fnsn | ⊢ { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 }  Fn  { 0 } | 
						
							| 22 |  | 0nnn | ⊢ ¬  0  ∈  ℕ | 
						
							| 23 |  | disjsn | ⊢ ( ( ℕ  ∩  { 0 } )  =  ∅  ↔  ¬  0  ∈  ℕ ) | 
						
							| 24 | 22 23 | mpbir | ⊢ ( ℕ  ∩  { 0 } )  =  ∅ | 
						
							| 25 | 19 | snid | ⊢ 0  ∈  { 0 } | 
						
							| 26 | 24 25 | pm3.2i | ⊢ ( ( ℕ  ∩  { 0 } )  =  ∅  ∧  0  ∈  { 0 } ) | 
						
							| 27 |  | fvun2 | ⊢ ( ( (  I   ↾  ℕ )  Fn  ℕ  ∧  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 }  Fn  { 0 }  ∧  ( ( ℕ  ∩  { 0 } )  =  ∅  ∧  0  ∈  { 0 } ) )  →  ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 0 )  =  ( { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ‘ 0 ) ) | 
						
							| 28 | 18 21 26 27 | mp3an | ⊢ ( ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ‘ 0 )  =  ( { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ‘ 0 ) | 
						
							| 29 | 17 28 | eqtri | ⊢ ( 𝑄 ‘ 0 )  =  ( { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ‘ 0 ) | 
						
							| 30 | 19 20 | fvsn | ⊢ ( { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ‘ 0 )  =  { 〈 0 ,  𝑃 〉 } | 
						
							| 31 | 29 30 | eqtri | ⊢ ( 𝑄 ‘ 0 )  =  { 〈 0 ,  𝑃 〉 } |