Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
12
|
fveq1i |
⊢ ( 𝑄 ‘ 0 ) = ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 0 ) |
14 |
|
0z |
⊢ 0 ∈ ℤ |
15 |
|
seq1 |
⊢ ( 0 ∈ ℤ → ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 0 ) ) |
16 |
14 15
|
ax-mp |
⊢ ( seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 0 ) |
17 |
13 16
|
eqtri |
⊢ ( 𝑄 ‘ 0 ) = ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 0 ) |
18 |
|
fnresi |
⊢ ( I ↾ ℕ ) Fn ℕ |
19 |
|
c0ex |
⊢ 0 ∈ V |
20 |
|
snex |
⊢ { 〈 0 , 𝑃 〉 } ∈ V |
21 |
19 20
|
fnsn |
⊢ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } Fn { 0 } |
22 |
|
0nnn |
⊢ ¬ 0 ∈ ℕ |
23 |
|
disjsn |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ↔ ¬ 0 ∈ ℕ ) |
24 |
22 23
|
mpbir |
⊢ ( ℕ ∩ { 0 } ) = ∅ |
25 |
19
|
snid |
⊢ 0 ∈ { 0 } |
26 |
24 25
|
pm3.2i |
⊢ ( ( ℕ ∩ { 0 } ) = ∅ ∧ 0 ∈ { 0 } ) |
27 |
|
fvun2 |
⊢ ( ( ( I ↾ ℕ ) Fn ℕ ∧ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } Fn { 0 } ∧ ( ( ℕ ∩ { 0 } ) = ∅ ∧ 0 ∈ { 0 } ) ) → ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 0 ) = ( { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ‘ 0 ) ) |
28 |
18 21 26 27
|
mp3an |
⊢ ( ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ‘ 0 ) = ( { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ‘ 0 ) |
29 |
17 28
|
eqtri |
⊢ ( 𝑄 ‘ 0 ) = ( { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ‘ 0 ) |
30 |
19 20
|
fvsn |
⊢ ( { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ‘ 0 ) = { 〈 0 , 𝑃 〉 } |
31 |
29 30
|
eqtri |
⊢ ( 𝑄 ‘ 0 ) = { 〈 0 , 𝑃 〉 } |