Metamath Proof Explorer


Theorem cvmliftlem3

Description: Lemma for cvmlift . Since 1st( TM ) is a neighborhood of ( G " W ) , every element A e. W satisfies ( GA ) e. ( 1st( TM ) ) . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem1.m φ ψ M 1 N
cvmliftlem3.3 W = M 1 N M N
cvmliftlem3.m φ ψ A W
Assertion cvmliftlem3 φ ψ G A 1 st T M

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem1.m φ ψ M 1 N
13 cvmliftlem3.3 W = M 1 N M N
14 cvmliftlem3.m φ ψ A W
15 10 adantr φ ψ k 1 N G k 1 N k N 1 st T k
16 oveq1 k = M k 1 = M 1
17 16 oveq1d k = M k 1 N = M 1 N
18 oveq1 k = M k N = M N
19 17 18 oveq12d k = M k 1 N k N = M 1 N M N
20 19 13 eqtr4di k = M k 1 N k N = W
21 20 imaeq2d k = M G k 1 N k N = G W
22 2fveq3 k = M 1 st T k = 1 st T M
23 21 22 sseq12d k = M G k 1 N k N 1 st T k G W 1 st T M
24 23 rspcv M 1 N k 1 N G k 1 N k N 1 st T k G W 1 st T M
25 12 15 24 sylc φ ψ G W 1 st T M
26 iiuni 0 1 = II
27 26 3 cnf G II Cn J G : 0 1 X
28 5 27 syl φ G : 0 1 X
29 28 adantr φ ψ G : 0 1 X
30 29 ffund φ ψ Fun G
31 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem2 φ ψ W 0 1
32 29 fdmd φ ψ dom G = 0 1
33 31 32 sseqtrrd φ ψ W dom G
34 funfvima2 Fun G W dom G A W G A G W
35 30 33 34 syl2anc φ ψ A W G A G W
36 14 35 mpd φ ψ G A G W
37 25 36 sseldd φ ψ G A 1 st T M