| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem5.3 | ⊢ 𝑊  =  ( ( ( 𝑀  −  1 )  /  𝑁 ) [,] ( 𝑀  /  𝑁 ) ) | 
						
							| 14 |  | fzssp1 | ⊢ ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) ) | 
						
							| 15 | 8 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑁  ∈  ℂ ) | 
						
							| 17 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 18 |  | npcan | ⊢ ( ( 𝑁  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 19 | 16 17 18 | sylancl | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑁  −  1 )  +  1 )  =  𝑁 ) | 
						
							| 20 | 19 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 0 ... ( ( 𝑁  −  1 )  +  1 ) )  =  ( 0 ... 𝑁 ) ) | 
						
							| 21 | 14 20 | sseqtrid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 0 ... ( 𝑁  −  1 ) )  ⊆  ( 0 ... 𝑁 ) ) | 
						
							| 22 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  𝑀  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 23 |  | elfzelz | ⊢ ( 𝑀  ∈  ( 1 ... 𝑁 )  →  𝑀  ∈  ℤ ) | 
						
							| 24 | 8 | nnzd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 25 |  | elfzm1b | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( 𝑀  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 26 | 23 24 25 | syl2anr | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) ) | 
						
							| 27 | 22 26 | mpbid | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  −  1 )  ∈  ( 0 ... ( 𝑁  −  1 ) ) ) | 
						
							| 28 | 21 27 | sseldd | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 29 |  | elfznn0 | ⊢ ( ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( 𝑀  −  1 )  ∈  ℕ0 ) | 
						
							| 31 |  | eleq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  ↔  0  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 32 |  | fveq2 | ⊢ ( 𝑦  =  0  →  ( 𝑄 ‘ 𝑦 )  =  ( 𝑄 ‘ 0 ) ) | 
						
							| 33 |  | oveq1 | ⊢ ( 𝑦  =  0  →  ( 𝑦  /  𝑁 )  =  ( 0  /  𝑁 ) ) | 
						
							| 34 | 32 33 | fveq12d | ⊢ ( 𝑦  =  0  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  =  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) ) ) | 
						
							| 35 |  | fvoveq1 | ⊢ ( 𝑦  =  0  →  ( 𝐺 ‘ ( 𝑦  /  𝑁 ) )  =  ( 𝐺 ‘ ( 0  /  𝑁 ) ) ) | 
						
							| 36 | 35 | sneqd | ⊢ ( 𝑦  =  0  →  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) }  =  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) | 
						
							| 37 | 36 | imaeq2d | ⊢ ( 𝑦  =  0  →  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) | 
						
							| 38 | 34 37 | eleq12d | ⊢ ( 𝑦  =  0  →  ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  ↔  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) ) | 
						
							| 39 | 31 38 | imbi12d | ⊢ ( 𝑦  =  0  →  ( ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) )  ↔  ( 0  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑦  =  0  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) ) )  ↔  ( 𝜑  →  ( 0  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) ) ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  ↔  𝑛  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑄 ‘ 𝑦 )  =  ( 𝑄 ‘ 𝑛 ) ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  /  𝑁 )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 44 | 42 43 | fveq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 45 |  | fvoveq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝐺 ‘ ( 𝑦  /  𝑁 ) )  =  ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 46 | 45 | sneqd | ⊢ ( 𝑦  =  𝑛  →  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) }  =  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) | 
						
							| 47 | 46 | imaeq2d | ⊢ ( 𝑦  =  𝑛  →  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) | 
						
							| 48 | 44 47 | eleq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  ↔  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) ) | 
						
							| 49 | 41 48 | imbi12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) )  ↔  ( 𝑛  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) ) ) | 
						
							| 50 | 49 | imbi2d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) ) )  ↔  ( 𝜑  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) ) ) ) | 
						
							| 51 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 52 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝑄 ‘ 𝑦 )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 53 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝑦  /  𝑁 )  =  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 54 | 52 53 | fveq12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 55 |  | fvoveq1 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝐺 ‘ ( 𝑦  /  𝑁 ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 56 | 55 | sneqd | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) }  =  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) | 
						
							| 57 | 56 | imaeq2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) | 
						
							| 58 | 54 57 | eleq12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  ↔  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) ) | 
						
							| 59 | 51 58 | imbi12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) )  ↔  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) ) ) | 
						
							| 60 | 59 | imbi2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) ) )  ↔  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) ) ) ) | 
						
							| 61 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  ↔  ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 62 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( 𝑄 ‘ 𝑦 )  =  ( 𝑄 ‘ ( 𝑀  −  1 ) ) ) | 
						
							| 63 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( 𝑦  /  𝑁 )  =  ( ( 𝑀  −  1 )  /  𝑁 ) ) | 
						
							| 64 | 62 63 | fveq12d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) | 
						
							| 65 |  | fvoveq1 | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( 𝐺 ‘ ( 𝑦  /  𝑁 ) )  =  ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) ) | 
						
							| 66 | 65 | sneqd | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) }  =  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) | 
						
							| 67 | 66 | imaeq2d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 68 | 64 67 | eleq12d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } )  ↔  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) ) | 
						
							| 69 | 61 68 | imbi12d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) )  ↔  ( ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) ) ) | 
						
							| 70 | 69 | imbi2d | ⊢ ( 𝑦  =  ( 𝑀  −  1 )  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑦  /  𝑁 ) ) } ) ) )  ↔  ( 𝜑  →  ( ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) ) ) ) | 
						
							| 71 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem4 | ⊢ ( 𝑄 ‘ 0 )  =  { 〈 0 ,  𝑃 〉 } | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  ( 𝑄 ‘ 0 )  =  { 〈 0 ,  𝑃 〉 } ) | 
						
							| 73 | 8 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 74 | 15 73 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝑁 )  =  0 ) | 
						
							| 75 | 72 74 | fveq12d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  =  ( { 〈 0 ,  𝑃 〉 } ‘ 0 ) ) | 
						
							| 76 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 77 |  | fvsng | ⊢ ( ( 0  ∈  ℕ0  ∧  𝑃  ∈  𝐵 )  →  ( { 〈 0 ,  𝑃 〉 } ‘ 0 )  =  𝑃 ) | 
						
							| 78 | 76 6 77 | sylancr | ⊢ ( 𝜑  →  ( { 〈 0 ,  𝑃 〉 } ‘ 0 )  =  𝑃 ) | 
						
							| 79 | 75 78 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  =  𝑃 ) | 
						
							| 80 | 74 | fveq2d | ⊢ ( 𝜑  →  ( 𝐺 ‘ ( 0  /  𝑁 ) )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 81 | 7 80 | eqtr4d | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ ( 0  /  𝑁 ) ) ) | 
						
							| 82 |  | cvmcn | ⊢ ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 83 | 4 82 | syl | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  Cn  𝐽 ) ) | 
						
							| 84 | 2 3 | cnf | ⊢ ( 𝐹  ∈  ( 𝐶  Cn  𝐽 )  →  𝐹 : 𝐵 ⟶ 𝑋 ) | 
						
							| 85 |  | ffn | ⊢ ( 𝐹 : 𝐵 ⟶ 𝑋  →  𝐹  Fn  𝐵 ) | 
						
							| 86 | 83 84 85 | 3syl | ⊢ ( 𝜑  →  𝐹  Fn  𝐵 ) | 
						
							| 87 |  | fniniseg | ⊢ ( 𝐹  Fn  𝐵  →  ( 𝑃  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } )  ↔  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ ( 0  /  𝑁 ) ) ) ) ) | 
						
							| 88 | 86 87 | syl | ⊢ ( 𝜑  →  ( 𝑃  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } )  ↔  ( 𝑃  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ ( 0  /  𝑁 ) ) ) ) ) | 
						
							| 89 | 6 81 88 | mpbir2and | ⊢ ( 𝜑  →  𝑃  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) | 
						
							| 90 | 79 89 | eqeltrd | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) | 
						
							| 91 | 90 | a1d | ⊢ ( 𝜑  →  ( 0  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 0 ) ‘ ( 0  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 0  /  𝑁 ) ) } ) ) ) | 
						
							| 92 |  | id | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ℕ0 ) | 
						
							| 93 |  | nn0uz | ⊢ ℕ0  =  ( ℤ≥ ‘ 0 ) | 
						
							| 94 | 92 93 | eleqtrdi | ⊢ ( 𝑛  ∈  ℕ0  →  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 95 | 94 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  𝑛  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 96 |  | peano2fzr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 0 )  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  →  𝑛  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 97 | 96 | ex | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 0 )  →  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  𝑛  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 98 | 95 97 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  𝑛  ∈  ( 0 ... 𝑁 ) ) ) | 
						
							| 99 | 98 | imim1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ0 )  →  ( ( 𝑛  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) )  →  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) ) ) | 
						
							| 100 |  | eqid | ⊢ ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 101 |  | simprlr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) ) | 
						
							| 102 |  | elfzle2 | ⊢ ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( 𝑛  +  1 )  ≤  𝑁 ) | 
						
							| 103 | 101 102 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ≤  𝑁 ) | 
						
							| 104 |  | simprll | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑛  ∈  ℕ0 ) | 
						
							| 105 |  | nn0p1nn | ⊢ ( 𝑛  ∈  ℕ0  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 106 | 104 105 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 107 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 108 | 106 107 | eleqtrdi | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 109 | 24 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 110 |  | elfz5 | ⊢ ( ( ( 𝑛  +  1 )  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑛  +  1 )  ≤  𝑁 ) ) | 
						
							| 111 | 108 109 110 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑛  +  1 )  ≤  𝑁 ) ) | 
						
							| 112 | 103 111 | mpbird | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 113 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) | 
						
							| 114 | 104 | nn0cnd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 115 |  | pncan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 116 | 114 17 115 | sylancl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 117 | 116 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) )  =  ( 𝑄 ‘ 𝑛 ) ) | 
						
							| 118 | 116 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 119 | 117 118 | fveq12d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 120 | 118 | fveq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝐺 ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 121 | 120 | sneqd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  { ( 𝐺 ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) }  =  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) | 
						
							| 122 | 121 | imaeq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) } )  =  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) | 
						
							| 123 | 113 119 122 | 3eltr4d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 124 | 1 2 3 4 5 6 7 8 9 10 11 12 100 112 123 | cvmliftlem6 | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 125 | 124 | simpld | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 126 | 104 | nn0red | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 127 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑁  ∈  ℕ ) | 
						
							| 128 | 126 127 | nndivred | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  /  𝑁 )  ∈  ℝ ) | 
						
							| 129 | 128 | rexrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  /  𝑁 )  ∈  ℝ* ) | 
						
							| 130 |  | peano2re | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 131 | 126 130 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 132 | 131 127 | nndivred | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 133 | 132 | rexrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ* ) | 
						
							| 134 | 126 | ltp1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑛  <  ( 𝑛  +  1 ) ) | 
						
							| 135 | 127 | nnred | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝑁  ∈  ℝ ) | 
						
							| 136 | 127 | nngt0d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  0  <  𝑁 ) | 
						
							| 137 |  | ltdiv1 | ⊢ ( ( 𝑛  ∈  ℝ  ∧  ( 𝑛  +  1 )  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 138 | 126 131 135 136 137 | syl112anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 139 | 134 138 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 140 | 128 132 139 | ltled | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 141 |  | ubicc2 | ⊢ ( ( ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 142 | 129 133 140 141 | syl3anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 143 | 118 | oveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 144 | 142 143 | eleqtrrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 145 | 125 144 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  𝐵 ) | 
						
							| 146 | 124 | simprd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 147 | 143 | reseq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 148 | 146 147 | eqtrd | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 149 | 148 | fveq1d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 150 | 143 | feq2d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ↔  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) ) | 
						
							| 151 | 125 150 | mpbid | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 152 |  | fvco3 | ⊢ ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  →  ( ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 153 | 151 142 152 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 154 |  | fvres | ⊢ ( ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  →  ( ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 155 | 142 154 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 156 | 149 153 155 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 157 | 86 | adantr | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  𝐹  Fn  𝐵 ) | 
						
							| 158 |  | fniniseg | ⊢ ( 𝐹  Fn  𝐵  →  ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 159 | 157 158 | syl | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } )  ↔  ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  𝐵  ∧  ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 160 | 145 156 159 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) )  ∧  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) | 
						
							| 161 | 160 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ0  ∧  ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 ) ) )  →  ( ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) ) | 
						
							| 162 | 99 161 | animpimp2impd | ⊢ ( 𝑛  ∈  ℕ0  →  ( ( 𝜑  →  ( 𝑛  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( 𝑛  /  𝑁 ) ) } ) ) )  →  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  +  1 )  /  𝑁 ) ) } ) ) ) ) ) | 
						
							| 163 | 40 50 60 70 91 162 | nn0ind | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ0  →  ( 𝜑  →  ( ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) ) ) | 
						
							| 164 | 163 | impd | ⊢ ( ( 𝑀  −  1 )  ∈  ℕ0  →  ( ( 𝜑  ∧  ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) ) | 
						
							| 165 | 30 164 | mpcom | ⊢ ( ( 𝜑  ∧  ( 𝑀  −  1 )  ∈  ( 0 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 166 | 28 165 | syldan | ⊢ ( ( 𝜑  ∧  𝑀  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑀  −  1 ) ) ‘ ( ( 𝑀  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑀  −  1 )  /  𝑁 ) ) } ) ) |