Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem5.3 |
⊢ 𝑊 = ( ( ( 𝑀 − 1 ) / 𝑁 ) [,] ( 𝑀 / 𝑁 ) ) |
14 |
|
fzssp1 |
⊢ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) |
15 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑁 ∈ ℂ ) |
17 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
18 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
19 |
16 17 18
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) ) |
21 |
14 20
|
sseqtrid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → 𝑀 ∈ ( 1 ... 𝑁 ) ) |
23 |
|
elfzelz |
⊢ ( 𝑀 ∈ ( 1 ... 𝑁 ) → 𝑀 ∈ ℤ ) |
24 |
8
|
nnzd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
25 |
|
elfzm1b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
26 |
23 24 25
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 ∈ ( 1 ... 𝑁 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) ) |
27 |
22 26
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 − 1 ) ∈ ( 0 ... ( 𝑁 − 1 ) ) ) |
28 |
21 27
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) ) |
29 |
|
elfznn0 |
⊢ ( ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) ) → ( 𝑀 − 1 ) ∈ ℕ0 ) |
31 |
|
eleq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 ∈ ( 0 ... 𝑁 ) ↔ 0 ∈ ( 0 ... 𝑁 ) ) ) |
32 |
|
fveq2 |
⊢ ( 𝑦 = 0 → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 0 ) ) |
33 |
|
oveq1 |
⊢ ( 𝑦 = 0 → ( 𝑦 / 𝑁 ) = ( 0 / 𝑁 ) ) |
34 |
32 33
|
fveq12d |
⊢ ( 𝑦 = 0 → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) = ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ) |
35 |
|
fvoveq1 |
⊢ ( 𝑦 = 0 → ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) = ( 𝐺 ‘ ( 0 / 𝑁 ) ) ) |
36 |
35
|
sneqd |
⊢ ( 𝑦 = 0 → { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } = { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) |
37 |
36
|
imaeq2d |
⊢ ( 𝑦 = 0 → ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) = ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) |
38 |
34 37
|
eleq12d |
⊢ ( 𝑦 = 0 → ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ↔ ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) ) |
39 |
31 38
|
imbi12d |
⊢ ( 𝑦 = 0 → ( ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ↔ ( 0 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) ) ) |
40 |
39
|
imbi2d |
⊢ ( 𝑦 = 0 → ( ( 𝜑 → ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ) ↔ ( 𝜑 → ( 0 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) ) ) ) |
41 |
|
eleq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 ∈ ( 0 ... 𝑁 ) ↔ 𝑛 ∈ ( 0 ... 𝑁 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑦 = 𝑛 → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ 𝑛 ) ) |
43 |
|
oveq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝑦 / 𝑁 ) = ( 𝑛 / 𝑁 ) ) |
44 |
42 43
|
fveq12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) = ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ) |
45 |
|
fvoveq1 |
⊢ ( 𝑦 = 𝑛 → ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) = ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) ) |
46 |
45
|
sneqd |
⊢ ( 𝑦 = 𝑛 → { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } = { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) |
47 |
46
|
imaeq2d |
⊢ ( 𝑦 = 𝑛 → ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) = ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) |
48 |
44 47
|
eleq12d |
⊢ ( 𝑦 = 𝑛 → ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ↔ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) |
49 |
41 48
|
imbi12d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ↔ ( 𝑛 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) ) |
50 |
49
|
imbi2d |
⊢ ( 𝑦 = 𝑛 → ( ( 𝜑 → ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ) ↔ ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) ) ) |
51 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( 𝑦 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
52 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) |
53 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( 𝑦 / 𝑁 ) = ( ( 𝑛 + 1 ) / 𝑁 ) ) |
54 |
52 53
|
fveq12d |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) = ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
55 |
|
fvoveq1 |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
56 |
55
|
sneqd |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } = { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) |
57 |
56
|
imaeq2d |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) = ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) |
58 |
54 57
|
eleq12d |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ↔ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) ) |
59 |
51 58
|
imbi12d |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ↔ ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) ) ) |
60 |
59
|
imbi2d |
⊢ ( 𝑦 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ) ↔ ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) ) ) ) |
61 |
|
eleq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑦 ∈ ( 0 ... 𝑁 ) ↔ ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) ) ) |
62 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑄 ‘ 𝑦 ) = ( 𝑄 ‘ ( 𝑀 − 1 ) ) ) |
63 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝑦 / 𝑁 ) = ( ( 𝑀 − 1 ) / 𝑁 ) ) |
64 |
62 63
|
fveq12d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) = ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) |
65 |
|
fvoveq1 |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) = ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ) |
66 |
65
|
sneqd |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } = { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) |
67 |
66
|
imaeq2d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) = ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) |
68 |
64 67
|
eleq12d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ↔ ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) ) |
69 |
61 68
|
imbi12d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ↔ ( ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) ) ) |
70 |
69
|
imbi2d |
⊢ ( 𝑦 = ( 𝑀 − 1 ) → ( ( 𝜑 → ( 𝑦 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑦 ) ‘ ( 𝑦 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑦 / 𝑁 ) ) } ) ) ) ↔ ( 𝜑 → ( ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) ) ) ) |
71 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem4 |
⊢ ( 𝑄 ‘ 0 ) = { 〈 0 , 𝑃 〉 } |
72 |
71
|
a1i |
⊢ ( 𝜑 → ( 𝑄 ‘ 0 ) = { 〈 0 , 𝑃 〉 } ) |
73 |
8
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
74 |
15 73
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑁 ) = 0 ) |
75 |
72 74
|
fveq12d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) = ( { 〈 0 , 𝑃 〉 } ‘ 0 ) ) |
76 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
77 |
|
fvsng |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑃 ∈ 𝐵 ) → ( { 〈 0 , 𝑃 〉 } ‘ 0 ) = 𝑃 ) |
78 |
76 6 77
|
sylancr |
⊢ ( 𝜑 → ( { 〈 0 , 𝑃 〉 } ‘ 0 ) = 𝑃 ) |
79 |
75 78
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) = 𝑃 ) |
80 |
74
|
fveq2d |
⊢ ( 𝜑 → ( 𝐺 ‘ ( 0 / 𝑁 ) ) = ( 𝐺 ‘ 0 ) ) |
81 |
7 80
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ ( 0 / 𝑁 ) ) ) |
82 |
|
cvmcn |
⊢ ( 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
83 |
4 82
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Cn 𝐽 ) ) |
84 |
2 3
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐶 Cn 𝐽 ) → 𝐹 : 𝐵 ⟶ 𝑋 ) |
85 |
|
ffn |
⊢ ( 𝐹 : 𝐵 ⟶ 𝑋 → 𝐹 Fn 𝐵 ) |
86 |
83 84 85
|
3syl |
⊢ ( 𝜑 → 𝐹 Fn 𝐵 ) |
87 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐵 → ( 𝑃 ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ ( 0 / 𝑁 ) ) ) ) ) |
88 |
86 87
|
syl |
⊢ ( 𝜑 → ( 𝑃 ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ↔ ( 𝑃 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ ( 0 / 𝑁 ) ) ) ) ) |
89 |
6 81 88
|
mpbir2and |
⊢ ( 𝜑 → 𝑃 ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) |
90 |
79 89
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) |
91 |
90
|
a1d |
⊢ ( 𝜑 → ( 0 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 0 ) ‘ ( 0 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 0 / 𝑁 ) ) } ) ) ) |
92 |
|
id |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ℕ0 ) |
93 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
94 |
92 93
|
eleqtrdi |
⊢ ( 𝑛 ∈ ℕ0 → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
95 |
94
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝑛 ∈ ( ℤ≥ ‘ 0 ) ) |
96 |
|
peano2fzr |
⊢ ( ( 𝑛 ∈ ( ℤ≥ ‘ 0 ) ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) → 𝑛 ∈ ( 0 ... 𝑁 ) ) |
97 |
96
|
ex |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 0 ) → ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ( 0 ... 𝑁 ) ) ) |
98 |
95 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → 𝑛 ∈ ( 0 ... 𝑁 ) ) ) |
99 |
98
|
imim1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) → ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) ) |
100 |
|
eqid |
⊢ ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) |
101 |
|
simprlr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) |
102 |
|
elfzle2 |
⊢ ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → ( 𝑛 + 1 ) ≤ 𝑁 ) |
103 |
101 102
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ≤ 𝑁 ) |
104 |
|
simprll |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑛 ∈ ℕ0 ) |
105 |
|
nn0p1nn |
⊢ ( 𝑛 ∈ ℕ0 → ( 𝑛 + 1 ) ∈ ℕ ) |
106 |
104 105
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ∈ ℕ ) |
107 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
108 |
106 107
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
109 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑁 ∈ ℤ ) |
110 |
|
elfz5 |
⊢ ( ( ( 𝑛 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑁 ∈ ℤ ) → ( ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ≤ 𝑁 ) ) |
111 |
108 109 110
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ↔ ( 𝑛 + 1 ) ≤ 𝑁 ) ) |
112 |
103 111
|
mpbird |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ) |
113 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) |
114 |
104
|
nn0cnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑛 ∈ ℂ ) |
115 |
|
pncan |
⊢ ( ( 𝑛 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
116 |
114 17 115
|
sylancl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) − 1 ) = 𝑛 ) |
117 |
116
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑄 ‘ ( ( 𝑛 + 1 ) − 1 ) ) = ( 𝑄 ‘ 𝑛 ) ) |
118 |
116
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) = ( 𝑛 / 𝑁 ) ) |
119 |
117 118
|
fveq12d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( ( 𝑛 + 1 ) − 1 ) ) ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ) |
120 |
118
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝐺 ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) = ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) ) |
121 |
120
|
sneqd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → { ( 𝐺 ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) } = { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) |
122 |
121
|
imaeq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) } ) = ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) |
123 |
113 119 122
|
3eltr4d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( ( 𝑛 + 1 ) − 1 ) ) ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) ) } ) ) |
124 |
1 2 3 4 5 6 7 8 9 10 11 12 100 112 123
|
cvmliftlem6 |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ∧ ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ↾ ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) ) |
125 |
124
|
simpld |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ) |
126 |
104
|
nn0red |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑛 ∈ ℝ ) |
127 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑁 ∈ ℕ ) |
128 |
126 127
|
nndivred |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 / 𝑁 ) ∈ ℝ ) |
129 |
128
|
rexrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 / 𝑁 ) ∈ ℝ* ) |
130 |
|
peano2re |
⊢ ( 𝑛 ∈ ℝ → ( 𝑛 + 1 ) ∈ ℝ ) |
131 |
126 130
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
132 |
131 127
|
nndivred |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ℝ ) |
133 |
132
|
rexrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ℝ* ) |
134 |
126
|
ltp1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑛 < ( 𝑛 + 1 ) ) |
135 |
127
|
nnred |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝑁 ∈ ℝ ) |
136 |
127
|
nngt0d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 0 < 𝑁 ) |
137 |
|
ltdiv1 |
⊢ ( ( 𝑛 ∈ ℝ ∧ ( 𝑛 + 1 ) ∈ ℝ ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 𝑛 / 𝑁 ) < ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
138 |
126 131 135 136 137
|
syl112anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 < ( 𝑛 + 1 ) ↔ ( 𝑛 / 𝑁 ) < ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
139 |
134 138
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 / 𝑁 ) < ( ( 𝑛 + 1 ) / 𝑁 ) ) |
140 |
128 132 139
|
ltled |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑛 / 𝑁 ) ≤ ( ( 𝑛 + 1 ) / 𝑁 ) ) |
141 |
|
ubicc2 |
⊢ ( ( ( 𝑛 / 𝑁 ) ∈ ℝ* ∧ ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ℝ* ∧ ( 𝑛 / 𝑁 ) ≤ ( ( 𝑛 + 1 ) / 𝑁 ) ) → ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
142 |
129 133 140 141
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
143 |
118
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
144 |
142 143
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
145 |
125 144
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ 𝐵 ) |
146 |
124
|
simprd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ↾ ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) |
147 |
143
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝐺 ↾ ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) = ( 𝐺 ↾ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) |
148 |
146 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) = ( 𝐺 ↾ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) |
149 |
148
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( ( 𝐺 ↾ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
150 |
143
|
feq2d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( ( ( 𝑛 + 1 ) − 1 ) / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ↔ ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ) ) |
151 |
125 150
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ) |
152 |
|
fvco3 |
⊢ ( ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) : ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ⟶ 𝐵 ∧ ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) → ( ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) |
153 |
151 142 152
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝐹 ∘ ( 𝑄 ‘ ( 𝑛 + 1 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) |
154 |
|
fvres |
⊢ ( ( ( 𝑛 + 1 ) / 𝑁 ) ∈ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) → ( ( 𝐺 ↾ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
155 |
142 154
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝐺 ↾ ( ( 𝑛 / 𝑁 ) [,] ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
156 |
149 153 155
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) |
157 |
86
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → 𝐹 Fn 𝐵 ) |
158 |
|
fniniseg |
⊢ ( 𝐹 Fn 𝐵 → ( ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ↔ ( ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) ) |
159 |
157 158
|
syl |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ↔ ( ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) = ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ) ) ) |
160 |
145 156 159
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ∧ ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) |
161 |
160
|
expr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ0 ∧ ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) ) ) → ( ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) ) |
162 |
99 161
|
animpimp2impd |
⊢ ( 𝑛 ∈ ℕ0 → ( ( 𝜑 → ( 𝑛 ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛 / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( 𝑛 / 𝑁 ) ) } ) ) ) → ( 𝜑 → ( ( 𝑛 + 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑛 + 1 ) ) ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑛 + 1 ) / 𝑁 ) ) } ) ) ) ) ) |
163 |
40 50 60 70 91 162
|
nn0ind |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( 𝜑 → ( ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) ) ) |
164 |
163
|
impd |
⊢ ( ( 𝑀 − 1 ) ∈ ℕ0 → ( ( 𝜑 ∧ ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) ) |
165 |
30 164
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑀 − 1 ) ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) |
166 |
28 165
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 𝑀 − 1 ) ) ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 𝑀 − 1 ) / 𝑁 ) ) } ) ) |