| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem1.m |
|- ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) |
| 13 |
|
relxp |
|- Rel ( { j } X. ( S ` j ) ) |
| 14 |
13
|
rgenw |
|- A. j e. J Rel ( { j } X. ( S ` j ) ) |
| 15 |
|
reliun |
|- ( Rel U_ j e. J ( { j } X. ( S ` j ) ) <-> A. j e. J Rel ( { j } X. ( S ` j ) ) ) |
| 16 |
14 15
|
mpbir |
|- Rel U_ j e. J ( { j } X. ( S ` j ) ) |
| 17 |
9
|
adantr |
|- ( ( ph /\ ps ) -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 18 |
17 12
|
ffvelcdmd |
|- ( ( ph /\ ps ) -> ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 19 |
|
1st2nd |
|- ( ( Rel U_ j e. J ( { j } X. ( S ` j ) ) /\ ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. ) |
| 20 |
16 18 19
|
sylancr |
|- ( ( ph /\ ps ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. ) |
| 21 |
20 18
|
eqeltrrd |
|- ( ( ph /\ ps ) -> <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 22 |
|
fveq2 |
|- ( j = ( 1st ` ( T ` M ) ) -> ( S ` j ) = ( S ` ( 1st ` ( T ` M ) ) ) ) |
| 23 |
22
|
opeliunxp2 |
|- ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) <-> ( ( 1st ` ( T ` M ) ) e. J /\ ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) ) |
| 24 |
23
|
simprbi |
|- ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |
| 25 |
21 24
|
syl |
|- ( ( ph /\ ps ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |