| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem1.m |  |-  ( ( ph /\ ps ) -> M e. ( 1 ... N ) ) | 
						
							| 13 |  | relxp |  |-  Rel ( { j } X. ( S ` j ) ) | 
						
							| 14 | 13 | rgenw |  |-  A. j e. J Rel ( { j } X. ( S ` j ) ) | 
						
							| 15 |  | reliun |  |-  ( Rel U_ j e. J ( { j } X. ( S ` j ) ) <-> A. j e. J Rel ( { j } X. ( S ` j ) ) ) | 
						
							| 16 | 14 15 | mpbir |  |-  Rel U_ j e. J ( { j } X. ( S ` j ) ) | 
						
							| 17 | 9 | adantr |  |-  ( ( ph /\ ps ) -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 18 | 17 12 | ffvelcdmd |  |-  ( ( ph /\ ps ) -> ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 19 |  | 1st2nd |  |-  ( ( Rel U_ j e. J ( { j } X. ( S ` j ) ) /\ ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. ) | 
						
							| 20 | 16 18 19 | sylancr |  |-  ( ( ph /\ ps ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. ) | 
						
							| 21 | 20 18 | eqeltrrd |  |-  ( ( ph /\ ps ) -> <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 22 |  | fveq2 |  |-  ( j = ( 1st ` ( T ` M ) ) -> ( S ` j ) = ( S ` ( 1st ` ( T ` M ) ) ) ) | 
						
							| 23 | 22 | opeliunxp2 |  |-  ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) <-> ( ( 1st ` ( T ` M ) ) e. J /\ ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) ) | 
						
							| 24 | 23 | simprbi |  |-  ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) | 
						
							| 25 | 21 24 | syl |  |-  ( ( ph /\ ps ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |