Metamath Proof Explorer


Theorem cvmliftlem1

Description: Lemma for cvmlift . In cvmliftlem15 , we picked an N large enough so that the sections ( G " [ ( k - 1 ) / N , k / N ] ) are all contained in an even covering, and the function T enumerates these even coverings. So 1st( TM ) is a neighborhood of ( G " [ ( M - 1 ) / N , M / N ] ) , and 2nd( TM ) is an even covering of 1st( TM ) , which is to say a disjoint union of open sets in C whose image is 1st( TM ) . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
cvmliftlem.b
|- B = U. C
cvmliftlem.x
|- X = U. J
cvmliftlem.f
|- ( ph -> F e. ( C CovMap J ) )
cvmliftlem.g
|- ( ph -> G e. ( II Cn J ) )
cvmliftlem.p
|- ( ph -> P e. B )
cvmliftlem.e
|- ( ph -> ( F ` P ) = ( G ` 0 ) )
cvmliftlem.n
|- ( ph -> N e. NN )
cvmliftlem.t
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
cvmliftlem.a
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
cvmliftlem.l
|- L = ( topGen ` ran (,) )
cvmliftlem1.m
|- ( ( ph /\ ps ) -> M e. ( 1 ... N ) )
Assertion cvmliftlem1
|- ( ( ph /\ ps ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1
 |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
2 cvmliftlem.b
 |-  B = U. C
3 cvmliftlem.x
 |-  X = U. J
4 cvmliftlem.f
 |-  ( ph -> F e. ( C CovMap J ) )
5 cvmliftlem.g
 |-  ( ph -> G e. ( II Cn J ) )
6 cvmliftlem.p
 |-  ( ph -> P e. B )
7 cvmliftlem.e
 |-  ( ph -> ( F ` P ) = ( G ` 0 ) )
8 cvmliftlem.n
 |-  ( ph -> N e. NN )
9 cvmliftlem.t
 |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
10 cvmliftlem.a
 |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
11 cvmliftlem.l
 |-  L = ( topGen ` ran (,) )
12 cvmliftlem1.m
 |-  ( ( ph /\ ps ) -> M e. ( 1 ... N ) )
13 relxp
 |-  Rel ( { j } X. ( S ` j ) )
14 13 rgenw
 |-  A. j e. J Rel ( { j } X. ( S ` j ) )
15 reliun
 |-  ( Rel U_ j e. J ( { j } X. ( S ` j ) ) <-> A. j e. J Rel ( { j } X. ( S ` j ) ) )
16 14 15 mpbir
 |-  Rel U_ j e. J ( { j } X. ( S ` j ) )
17 9 adantr
 |-  ( ( ph /\ ps ) -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
18 17 12 ffvelrnd
 |-  ( ( ph /\ ps ) -> ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) )
19 1st2nd
 |-  ( ( Rel U_ j e. J ( { j } X. ( S ` j ) ) /\ ( T ` M ) e. U_ j e. J ( { j } X. ( S ` j ) ) ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. )
20 16 18 19 sylancr
 |-  ( ( ph /\ ps ) -> ( T ` M ) = <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. )
21 20 18 eqeltrrd
 |-  ( ( ph /\ ps ) -> <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) )
22 fveq2
 |-  ( j = ( 1st ` ( T ` M ) ) -> ( S ` j ) = ( S ` ( 1st ` ( T ` M ) ) ) )
23 22 opeliunxp2
 |-  ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) <-> ( ( 1st ` ( T ` M ) ) e. J /\ ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) )
24 23 simprbi
 |-  ( <. ( 1st ` ( T ` M ) ) , ( 2nd ` ( T ` M ) ) >. e. U_ j e. J ( { j } X. ( S ` j ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) )
25 21 24 syl
 |-  ( ( ph /\ ps ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) )