| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | ssrab2 |  |-  { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ II | 
						
							| 9 | 5 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> G e. ( II Cn J ) ) | 
						
							| 10 |  | simprl |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> j e. J ) | 
						
							| 11 |  | cnima |  |-  ( ( G e. ( II Cn J ) /\ j e. J ) -> ( `' G " j ) e. II ) | 
						
							| 12 | 9 10 11 | syl2anc |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( `' G " j ) e. II ) | 
						
							| 13 |  | simplr |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> x e. ( 0 [,] 1 ) ) | 
						
							| 14 |  | simprrl |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( G ` x ) e. j ) | 
						
							| 15 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 16 | 15 3 | cnf |  |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 17 | 5 16 | syl |  |-  ( ph -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 18 | 17 | ad2antrr |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 19 |  | ffn |  |-  ( G : ( 0 [,] 1 ) --> X -> G Fn ( 0 [,] 1 ) ) | 
						
							| 20 |  | elpreima |  |-  ( G Fn ( 0 [,] 1 ) -> ( x e. ( `' G " j ) <-> ( x e. ( 0 [,] 1 ) /\ ( G ` x ) e. j ) ) ) | 
						
							| 21 | 18 19 20 | 3syl |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( x e. ( `' G " j ) <-> ( x e. ( 0 [,] 1 ) /\ ( G ` x ) e. j ) ) ) | 
						
							| 22 | 13 14 21 | mpbir2and |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> x e. ( `' G " j ) ) | 
						
							| 23 |  | simprrr |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( S ` j ) =/= (/) ) | 
						
							| 24 |  | ffun |  |-  ( G : ( 0 [,] 1 ) --> X -> Fun G ) | 
						
							| 25 |  | funimacnv |  |-  ( Fun G -> ( G " ( `' G " j ) ) = ( j i^i ran G ) ) | 
						
							| 26 | 18 24 25 | 3syl |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( G " ( `' G " j ) ) = ( j i^i ran G ) ) | 
						
							| 27 |  | inss1 |  |-  ( j i^i ran G ) C_ j | 
						
							| 28 | 26 27 | eqsstrdi |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> ( G " ( `' G " j ) ) C_ j ) | 
						
							| 29 | 28 | ralrimivw |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> A. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) | 
						
							| 30 |  | r19.2z |  |-  ( ( ( S ` j ) =/= (/) /\ A. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) -> E. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) | 
						
							| 31 | 23 29 30 | syl2anc |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> E. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) | 
						
							| 32 |  | eleq2 |  |-  ( u = ( `' G " j ) -> ( x e. u <-> x e. ( `' G " j ) ) ) | 
						
							| 33 |  | imaeq2 |  |-  ( u = ( `' G " j ) -> ( G " u ) = ( G " ( `' G " j ) ) ) | 
						
							| 34 | 33 | sseq1d |  |-  ( u = ( `' G " j ) -> ( ( G " u ) C_ j <-> ( G " ( `' G " j ) ) C_ j ) ) | 
						
							| 35 | 34 | rexbidv |  |-  ( u = ( `' G " j ) -> ( E. s e. ( S ` j ) ( G " u ) C_ j <-> E. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) ) | 
						
							| 36 | 32 35 | anbi12d |  |-  ( u = ( `' G " j ) -> ( ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) <-> ( x e. ( `' G " j ) /\ E. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) ) ) | 
						
							| 37 | 36 | rspcev |  |-  ( ( ( `' G " j ) e. II /\ ( x e. ( `' G " j ) /\ E. s e. ( S ` j ) ( G " ( `' G " j ) ) C_ j ) ) -> E. u e. II ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 38 | 12 22 31 37 | syl12anc |  |-  ( ( ( ph /\ x e. ( 0 [,] 1 ) ) /\ ( j e. J /\ ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) ) -> E. u e. II ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 39 | 4 | adantr |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> F e. ( C CovMap J ) ) | 
						
							| 40 | 17 | ffvelcdmda |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> ( G ` x ) e. X ) | 
						
							| 41 | 1 3 | cvmcov |  |-  ( ( F e. ( C CovMap J ) /\ ( G ` x ) e. X ) -> E. j e. J ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) | 
						
							| 42 | 39 40 41 | syl2anc |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> E. j e. J ( ( G ` x ) e. j /\ ( S ` j ) =/= (/) ) ) | 
						
							| 43 | 38 42 | reximddv |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> E. j e. J E. u e. II ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 44 |  | r19.42v |  |-  ( E. j e. J ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) <-> ( x e. u /\ E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 45 | 44 | rexbii |  |-  ( E. u e. II E. j e. J ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) <-> E. u e. II ( x e. u /\ E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 46 |  | rexcom |  |-  ( E. j e. J E. u e. II ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) <-> E. u e. II E. j e. J ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 47 |  | elunirab |  |-  ( x e. U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } <-> E. u e. II ( x e. u /\ E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j ) ) | 
						
							| 48 | 45 46 47 | 3bitr4i |  |-  ( E. j e. J E. u e. II ( x e. u /\ E. s e. ( S ` j ) ( G " u ) C_ j ) <-> x e. U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) | 
						
							| 49 | 43 48 | sylib |  |-  ( ( ph /\ x e. ( 0 [,] 1 ) ) -> x e. U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) | 
						
							| 50 | 49 | ex |  |-  ( ph -> ( x e. ( 0 [,] 1 ) -> x e. U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) ) | 
						
							| 51 | 50 | ssrdv |  |-  ( ph -> ( 0 [,] 1 ) C_ U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) | 
						
							| 52 |  | uniss |  |-  ( { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ II -> U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ U. II ) | 
						
							| 53 | 8 52 | mp1i |  |-  ( ph -> U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ U. II ) | 
						
							| 54 | 53 15 | sseqtrrdi |  |-  ( ph -> U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ ( 0 [,] 1 ) ) | 
						
							| 55 | 51 54 | eqssd |  |-  ( ph -> ( 0 [,] 1 ) = U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) | 
						
							| 56 |  | lebnumii |  |-  ( ( { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } C_ II /\ ( 0 [,] 1 ) = U. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ) -> E. n e. NN A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v ) | 
						
							| 57 | 8 55 56 | sylancr |  |-  ( ph -> E. n e. NN A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v ) | 
						
							| 58 |  | fzfi |  |-  ( 1 ... n ) e. Fin | 
						
							| 59 |  | imaeq2 |  |-  ( u = v -> ( G " u ) = ( G " v ) ) | 
						
							| 60 | 59 | sseq1d |  |-  ( u = v -> ( ( G " u ) C_ j <-> ( G " v ) C_ j ) ) | 
						
							| 61 | 60 | 2rexbidv |  |-  ( u = v -> ( E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j <-> E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j ) ) | 
						
							| 62 | 61 | rexrab |  |-  ( E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v <-> E. v e. II ( E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j /\ ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v ) ) | 
						
							| 63 |  | vex |  |-  j e. _V | 
						
							| 64 |  | vex |  |-  s e. _V | 
						
							| 65 | 63 64 | op1std |  |-  ( u = <. j , s >. -> ( 1st ` u ) = j ) | 
						
							| 66 | 65 | sseq2d |  |-  ( u = <. j , s >. -> ( ( G " v ) C_ ( 1st ` u ) <-> ( G " v ) C_ j ) ) | 
						
							| 67 | 66 | rexiunxp |  |-  ( E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " v ) C_ ( 1st ` u ) <-> E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j ) | 
						
							| 68 |  | imass2 |  |-  ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( G " v ) ) | 
						
							| 69 |  | sstr2 |  |-  ( ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( G " v ) -> ( ( G " v ) C_ ( 1st ` u ) -> ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> ( ( G " v ) C_ ( 1st ` u ) -> ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) ) | 
						
							| 71 | 70 | reximdv |  |-  ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> ( E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " v ) C_ ( 1st ` u ) -> E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) ) | 
						
							| 72 | 67 71 | biimtrrid |  |-  ( ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> ( E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j -> E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) ) | 
						
							| 73 | 72 | impcom |  |-  ( ( E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j /\ ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v ) -> E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) | 
						
							| 74 | 73 | rexlimivw |  |-  ( E. v e. II ( E. j e. J E. s e. ( S ` j ) ( G " v ) C_ j /\ ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v ) -> E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) | 
						
							| 75 | 62 74 | sylbi |  |-  ( E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) | 
						
							| 76 | 75 | ralimi |  |-  ( A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> A. k e. ( 1 ... n ) E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) | 
						
							| 77 |  | fveq2 |  |-  ( u = ( g ` k ) -> ( 1st ` u ) = ( 1st ` ( g ` k ) ) ) | 
						
							| 78 | 77 | sseq2d |  |-  ( u = ( g ` k ) -> ( ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) <-> ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) | 
						
							| 79 | 78 | ac6sfi |  |-  ( ( ( 1 ... n ) e. Fin /\ A. k e. ( 1 ... n ) E. u e. U_ j e. J ( { j } X. ( S ` j ) ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` u ) ) -> E. g ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) | 
						
							| 80 | 58 76 79 | sylancr |  |-  ( A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> E. g ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) | 
						
							| 81 | 4 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> F e. ( C CovMap J ) ) | 
						
							| 82 | 5 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> G e. ( II Cn J ) ) | 
						
							| 83 | 6 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> P e. B ) | 
						
							| 84 | 7 | ad2antrr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 85 |  | simplr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> n e. NN ) | 
						
							| 86 |  | simprl |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 87 |  | sneq |  |-  ( j = a -> { j } = { a } ) | 
						
							| 88 |  | fveq2 |  |-  ( j = a -> ( S ` j ) = ( S ` a ) ) | 
						
							| 89 | 87 88 | xpeq12d |  |-  ( j = a -> ( { j } X. ( S ` j ) ) = ( { a } X. ( S ` a ) ) ) | 
						
							| 90 | 89 | cbviunv |  |-  U_ j e. J ( { j } X. ( S ` j ) ) = U_ a e. J ( { a } X. ( S ` a ) ) | 
						
							| 91 |  | feq3 |  |-  ( U_ j e. J ( { j } X. ( S ` j ) ) = U_ a e. J ( { a } X. ( S ` a ) ) -> ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) <-> g : ( 1 ... n ) --> U_ a e. J ( { a } X. ( S ` a ) ) ) ) | 
						
							| 92 | 90 91 | ax-mp |  |-  ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) <-> g : ( 1 ... n ) --> U_ a e. J ( { a } X. ( S ` a ) ) ) | 
						
							| 93 | 86 92 | sylib |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> g : ( 1 ... n ) --> U_ a e. J ( { a } X. ( S ` a ) ) ) | 
						
							| 94 |  | simprr |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) | 
						
							| 95 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 96 |  | 2fveq3 |  |-  ( t = z -> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) = ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` z ) ) ) | 
						
							| 97 | 96 | cbvmptv |  |-  ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) = ( z e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` z ) ) ) | 
						
							| 98 |  | eleq2 |  |-  ( c = b -> ( ( y ` ( ( w - 1 ) / n ) ) e. c <-> ( y ` ( ( w - 1 ) / n ) ) e. b ) ) | 
						
							| 99 | 98 | cbvriotavw |  |-  ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) = ( iota_ b e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. b ) | 
						
							| 100 |  | fveq1 |  |-  ( y = x -> ( y ` ( ( w - 1 ) / n ) ) = ( x ` ( ( w - 1 ) / n ) ) ) | 
						
							| 101 | 100 | eleq1d |  |-  ( y = x -> ( ( y ` ( ( w - 1 ) / n ) ) e. b <-> ( x ` ( ( w - 1 ) / n ) ) e. b ) ) | 
						
							| 102 | 101 | riotabidv |  |-  ( y = x -> ( iota_ b e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. b ) = ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) | 
						
							| 103 | 99 102 | eqtrid |  |-  ( y = x -> ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) = ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) | 
						
							| 104 | 103 | reseq2d |  |-  ( y = x -> ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) = ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ) | 
						
							| 105 | 104 | cnveqd |  |-  ( y = x -> `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) = `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ) | 
						
							| 106 | 105 | fveq1d |  |-  ( y = x -> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` z ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) | 
						
							| 107 | 106 | mpteq2dv |  |-  ( y = x -> ( z e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` z ) ) ) = ( z e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 108 | 97 107 | eqtrid |  |-  ( y = x -> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) = ( z e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 109 |  | oveq1 |  |-  ( w = m -> ( w - 1 ) = ( m - 1 ) ) | 
						
							| 110 | 109 | oveq1d |  |-  ( w = m -> ( ( w - 1 ) / n ) = ( ( m - 1 ) / n ) ) | 
						
							| 111 |  | oveq1 |  |-  ( w = m -> ( w / n ) = ( m / n ) ) | 
						
							| 112 | 110 111 | oveq12d |  |-  ( w = m -> ( ( ( w - 1 ) / n ) [,] ( w / n ) ) = ( ( ( m - 1 ) / n ) [,] ( m / n ) ) ) | 
						
							| 113 |  | 2fveq3 |  |-  ( w = m -> ( 2nd ` ( g ` w ) ) = ( 2nd ` ( g ` m ) ) ) | 
						
							| 114 | 110 | fveq2d |  |-  ( w = m -> ( x ` ( ( w - 1 ) / n ) ) = ( x ` ( ( m - 1 ) / n ) ) ) | 
						
							| 115 | 114 | eleq1d |  |-  ( w = m -> ( ( x ` ( ( w - 1 ) / n ) ) e. b <-> ( x ` ( ( m - 1 ) / n ) ) e. b ) ) | 
						
							| 116 | 113 115 | riotaeqbidv |  |-  ( w = m -> ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) = ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) | 
						
							| 117 | 116 | reseq2d |  |-  ( w = m -> ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) = ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ) | 
						
							| 118 | 117 | cnveqd |  |-  ( w = m -> `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) = `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ) | 
						
							| 119 | 118 | fveq1d |  |-  ( w = m -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) | 
						
							| 120 | 112 119 | mpteq12dv |  |-  ( w = m -> ( z e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` w ) ) ( x ` ( ( w - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) = ( z e. ( ( ( m - 1 ) / n ) [,] ( m / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 121 | 108 120 | cbvmpov |  |-  ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) = ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / n ) [,] ( m / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 122 |  | seqeq2 |  |-  ( ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) = ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / n ) [,] ( m / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) -> seq 0 ( ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / n ) [,] ( m / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ) | 
						
							| 123 | 121 122 | ax-mp |  |-  seq 0 ( ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / n ) [,] ( m / n ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( g ` m ) ) ( x ` ( ( m - 1 ) / n ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 124 |  | eqid |  |-  U_ k e. ( 1 ... n ) ( seq 0 ( ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` k ) = U_ k e. ( 1 ... n ) ( seq 0 ( ( y e. _V , w e. NN |-> ( t e. ( ( ( w - 1 ) / n ) [,] ( w / n ) ) |-> ( `' ( F |` ( iota_ c e. ( 2nd ` ( g ` w ) ) ( y ` ( ( w - 1 ) / n ) ) e. c ) ) ` ( G ` t ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) ` k ) | 
						
							| 125 | 1 2 3 81 82 83 84 85 93 94 95 123 124 | cvmliftlem14 |  |-  ( ( ( ph /\ n e. NN ) /\ ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) ) -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 126 | 125 | ex |  |-  ( ( ph /\ n e. NN ) -> ( ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) | 
						
							| 127 | 126 | exlimdv |  |-  ( ( ph /\ n e. NN ) -> ( E. g ( g : ( 1 ... n ) --> U_ j e. J ( { j } X. ( S ` j ) ) /\ A. k e. ( 1 ... n ) ( G " ( ( ( k - 1 ) / n ) [,] ( k / n ) ) ) C_ ( 1st ` ( g ` k ) ) ) -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) | 
						
							| 128 | 80 127 | syl5 |  |-  ( ( ph /\ n e. NN ) -> ( A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) | 
						
							| 129 | 128 | rexlimdva |  |-  ( ph -> ( E. n e. NN A. k e. ( 1 ... n ) E. v e. { u e. II | E. j e. J E. s e. ( S ` j ) ( G " u ) C_ j } ( ( ( k - 1 ) / n ) [,] ( k / n ) ) C_ v -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) | 
						
							| 130 | 57 129 | mpd |  |-  ( ph -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |