| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | ssrab2 | ⊢ { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  II | 
						
							| 9 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 10 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  𝑗  ∈  𝐽 ) | 
						
							| 11 |  | cnima | ⊢ ( ( 𝐺  ∈  ( II  Cn  𝐽 )  ∧  𝑗  ∈  𝐽 )  →  ( ◡ 𝐺  “  𝑗 )  ∈  II ) | 
						
							| 12 | 9 10 11 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( ◡ 𝐺  “  𝑗 )  ∈  II ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  𝑥  ∈  ( 0 [,] 1 ) ) | 
						
							| 14 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑗 ) | 
						
							| 15 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 16 | 15 3 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 17 | 5 16 | syl | ⊢ ( 𝜑  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 18 | 17 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 19 |  | ffn | ⊢ ( 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋  →  𝐺  Fn  ( 0 [,] 1 ) ) | 
						
							| 20 |  | elpreima | ⊢ ( 𝐺  Fn  ( 0 [,] 1 )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  𝑗 )  ↔  ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝑗 ) ) ) | 
						
							| 21 | 18 19 20 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( 𝑥  ∈  ( ◡ 𝐺  “  𝑗 )  ↔  ( 𝑥  ∈  ( 0 [,] 1 )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝑗 ) ) ) | 
						
							| 22 | 13 14 21 | mpbir2and | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  𝑥  ∈  ( ◡ 𝐺  “  𝑗 ) ) | 
						
							| 23 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) | 
						
							| 24 |  | ffun | ⊢ ( 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋  →  Fun  𝐺 ) | 
						
							| 25 |  | funimacnv | ⊢ ( Fun  𝐺  →  ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  =  ( 𝑗  ∩  ran  𝐺 ) ) | 
						
							| 26 | 18 24 25 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  =  ( 𝑗  ∩  ran  𝐺 ) ) | 
						
							| 27 |  | inss1 | ⊢ ( 𝑗  ∩  ran  𝐺 )  ⊆  𝑗 | 
						
							| 28 | 26 27 | eqsstrdi | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) | 
						
							| 29 | 28 | ralrimivw | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ∀ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) | 
						
							| 30 |  | r19.2z | ⊢ ( ( ( 𝑆 ‘ 𝑗 )  ≠  ∅  ∧  ∀ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 )  →  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) | 
						
							| 31 | 23 29 30 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) | 
						
							| 32 |  | eleq2 | ⊢ ( 𝑢  =  ( ◡ 𝐺  “  𝑗 )  →  ( 𝑥  ∈  𝑢  ↔  𝑥  ∈  ( ◡ 𝐺  “  𝑗 ) ) ) | 
						
							| 33 |  | imaeq2 | ⊢ ( 𝑢  =  ( ◡ 𝐺  “  𝑗 )  →  ( 𝐺  “  𝑢 )  =  ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) ) ) | 
						
							| 34 | 33 | sseq1d | ⊢ ( 𝑢  =  ( ◡ 𝐺  “  𝑗 )  →  ( ( 𝐺  “  𝑢 )  ⊆  𝑗  ↔  ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) ) | 
						
							| 35 | 34 | rexbidv | ⊢ ( 𝑢  =  ( ◡ 𝐺  “  𝑗 )  →  ( ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗  ↔  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) ) | 
						
							| 36 | 32 35 | anbi12d | ⊢ ( 𝑢  =  ( ◡ 𝐺  “  𝑗 )  →  ( ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 )  ↔  ( 𝑥  ∈  ( ◡ 𝐺  “  𝑗 )  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) ) ) | 
						
							| 37 | 36 | rspcev | ⊢ ( ( ( ◡ 𝐺  “  𝑗 )  ∈  II  ∧  ( 𝑥  ∈  ( ◡ 𝐺  “  𝑗 )  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  ( ◡ 𝐺  “  𝑗 ) )  ⊆  𝑗 ) )  →  ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 38 | 12 22 31 37 | syl12anc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  ∧  ( 𝑗  ∈  𝐽  ∧  ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) )  →  ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 39 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 40 | 17 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  ( 𝐺 ‘ 𝑥 )  ∈  𝑋 ) | 
						
							| 41 | 1 3 | cvmcov | ⊢ ( ( 𝐹  ∈  ( 𝐶  CovMap  𝐽 )  ∧  ( 𝐺 ‘ 𝑥 )  ∈  𝑋 )  →  ∃ 𝑗  ∈  𝐽 ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 42 | 39 40 41 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  ∃ 𝑗  ∈  𝐽 ( ( 𝐺 ‘ 𝑥 )  ∈  𝑗  ∧  ( 𝑆 ‘ 𝑗 )  ≠  ∅ ) ) | 
						
							| 43 | 38 42 | reximddv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  ∃ 𝑗  ∈  𝐽 ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 44 |  | r19.42v | ⊢ ( ∃ 𝑗  ∈  𝐽 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 )  ↔  ( 𝑥  ∈  𝑢  ∧  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 45 | 44 | rexbii | ⊢ ( ∃ 𝑢  ∈  II ∃ 𝑗  ∈  𝐽 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 )  ↔  ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 46 |  | rexcom | ⊢ ( ∃ 𝑗  ∈  𝐽 ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 )  ↔  ∃ 𝑢  ∈  II ∃ 𝑗  ∈  𝐽 ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 47 |  | elunirab | ⊢ ( 𝑥  ∈  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ↔  ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 ) ) | 
						
							| 48 | 45 46 47 | 3bitr4i | ⊢ ( ∃ 𝑗  ∈  𝐽 ∃ 𝑢  ∈  II ( 𝑥  ∈  𝑢  ∧  ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 )  ↔  𝑥  ∈  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ) | 
						
							| 49 | 43 48 | sylib | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 0 [,] 1 ) )  →  𝑥  ∈  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ) | 
						
							| 50 | 49 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 0 [,] 1 )  →  𝑥  ∈  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ) ) | 
						
							| 51 | 50 | ssrdv | ⊢ ( 𝜑  →  ( 0 [,] 1 )  ⊆  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ) | 
						
							| 52 |  | uniss | ⊢ ( { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  II  →  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  ∪  II ) | 
						
							| 53 | 8 52 | mp1i | ⊢ ( 𝜑  →  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  ∪  II ) | 
						
							| 54 | 53 15 | sseqtrrdi | ⊢ ( 𝜑  →  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  ( 0 [,] 1 ) ) | 
						
							| 55 | 51 54 | eqssd | ⊢ ( 𝜑  →  ( 0 [,] 1 )  =  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ) | 
						
							| 56 |  | lebnumii | ⊢ ( ( { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 }  ⊆  II  ∧  ( 0 [,] 1 )  =  ∪  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } )  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣 ) | 
						
							| 57 | 8 55 56 | sylancr | ⊢ ( 𝜑  →  ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣 ) | 
						
							| 58 |  | fzfi | ⊢ ( 1 ... 𝑛 )  ∈  Fin | 
						
							| 59 |  | imaeq2 | ⊢ ( 𝑢  =  𝑣  →  ( 𝐺  “  𝑢 )  =  ( 𝐺  “  𝑣 ) ) | 
						
							| 60 | 59 | sseq1d | ⊢ ( 𝑢  =  𝑣  →  ( ( 𝐺  “  𝑢 )  ⊆  𝑗  ↔  ( 𝐺  “  𝑣 )  ⊆  𝑗 ) ) | 
						
							| 61 | 60 | 2rexbidv | ⊢ ( 𝑢  =  𝑣  →  ( ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗  ↔  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗 ) ) | 
						
							| 62 | 61 | rexrab | ⊢ ( ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  ↔  ∃ 𝑣  ∈  II ( ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗  ∧  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣 ) ) | 
						
							| 63 |  | vex | ⊢ 𝑗  ∈  V | 
						
							| 64 |  | vex | ⊢ 𝑠  ∈  V | 
						
							| 65 | 63 64 | op1std | ⊢ ( 𝑢  =  〈 𝑗 ,  𝑠 〉  →  ( 1st  ‘ 𝑢 )  =  𝑗 ) | 
						
							| 66 | 65 | sseq2d | ⊢ ( 𝑢  =  〈 𝑗 ,  𝑠 〉  →  ( ( 𝐺  “  𝑣 )  ⊆  ( 1st  ‘ 𝑢 )  ↔  ( 𝐺  “  𝑣 )  ⊆  𝑗 ) ) | 
						
							| 67 | 66 | rexiunxp | ⊢ ( ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  𝑣 )  ⊆  ( 1st  ‘ 𝑢 )  ↔  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗 ) | 
						
							| 68 |  | imass2 | ⊢ ( ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 𝐺  “  𝑣 ) ) | 
						
							| 69 |  | sstr2 | ⊢ ( ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 𝐺  “  𝑣 )  →  ( ( 𝐺  “  𝑣 )  ⊆  ( 1st  ‘ 𝑢 )  →  ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ( ( 𝐺  “  𝑣 )  ⊆  ( 1st  ‘ 𝑢 )  →  ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 71 | 70 | reximdv | ⊢ ( ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ( ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  𝑣 )  ⊆  ( 1st  ‘ 𝑢 )  →  ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 72 | 67 71 | biimtrrid | ⊢ ( ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ( ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗  →  ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) ) | 
						
							| 73 | 72 | impcom | ⊢ ( ( ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗  ∧  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣 )  →  ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) | 
						
							| 74 | 73 | rexlimivw | ⊢ ( ∃ 𝑣  ∈  II ( ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑣 )  ⊆  𝑗  ∧  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣 )  →  ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) | 
						
							| 75 | 62 74 | sylbi | ⊢ ( ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) | 
						
							| 76 | 75 | ralimi | ⊢ ( ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑢  =  ( 𝑔 ‘ 𝑘 )  →  ( 1st  ‘ 𝑢 )  =  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 78 | 77 | sseq2d | ⊢ ( 𝑢  =  ( 𝑔 ‘ 𝑘 )  →  ( ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 )  ↔  ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 79 | 78 | ac6sfi | ⊢ ( ( ( 1 ... 𝑛 )  ∈  Fin  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑢  ∈  ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ 𝑢 ) )  →  ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 80 | 58 76 79 | sylancr | ⊢ ( ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) | 
						
							| 81 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 82 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 83 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝑃  ∈  𝐵 ) | 
						
							| 84 | 7 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 85 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 86 |  | simprl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 87 |  | sneq | ⊢ ( 𝑗  =  𝑎  →  { 𝑗 }  =  { 𝑎 } ) | 
						
							| 88 |  | fveq2 | ⊢ ( 𝑗  =  𝑎  →  ( 𝑆 ‘ 𝑗 )  =  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 89 | 87 88 | xpeq12d | ⊢ ( 𝑗  =  𝑎  →  ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  =  ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 90 | 89 | cbviunv | ⊢ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  =  ∪  𝑎  ∈  𝐽 ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) ) | 
						
							| 91 |  | feq3 | ⊢ ( ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  =  ∪  𝑎  ∈  𝐽 ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) )  →  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ↔  𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑎  ∈  𝐽 ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) ) ) ) | 
						
							| 92 | 90 91 | ax-mp | ⊢ ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ↔  𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑎  ∈  𝐽 ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 93 | 86 92 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑎  ∈  𝐽 ( { 𝑎 }  ×  ( 𝑆 ‘ 𝑎 ) ) ) | 
						
							| 94 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 95 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 96 |  | 2fveq3 | ⊢ ( 𝑡  =  𝑧  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) )  =  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 97 | 96 | cbvmptv | ⊢ ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑧  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 98 |  | eleq2 | ⊢ ( 𝑐  =  𝑏  →  ( ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐  ↔  ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 99 | 98 | cbvriotavw | ⊢ ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) | 
						
							| 100 |  | fveq1 | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  =  ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) ) ) | 
						
							| 101 | 100 | eleq1d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏  ↔  ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 102 | 101 | riotabidv | ⊢ ( 𝑦  =  𝑥  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 103 | 99 102 | eqtrid | ⊢ ( 𝑦  =  𝑥  →  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 104 | 103 | reseq2d | ⊢ ( 𝑦  =  𝑥  →  ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) )  =  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ) | 
						
							| 105 | 104 | cnveqd | ⊢ ( 𝑦  =  𝑥  →  ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) )  =  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ) | 
						
							| 106 | 105 | fveq1d | ⊢ ( 𝑦  =  𝑥  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 107 | 106 | mpteq2dv | ⊢ ( 𝑦  =  𝑥  →  ( 𝑧  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 108 | 97 107 | eqtrid | ⊢ ( 𝑦  =  𝑥  →  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) )  =  ( 𝑧  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 109 |  | oveq1 | ⊢ ( 𝑤  =  𝑚  →  ( 𝑤  −  1 )  =  ( 𝑚  −  1 ) ) | 
						
							| 110 | 109 | oveq1d | ⊢ ( 𝑤  =  𝑚  →  ( ( 𝑤  −  1 )  /  𝑛 )  =  ( ( 𝑚  −  1 )  /  𝑛 ) ) | 
						
							| 111 |  | oveq1 | ⊢ ( 𝑤  =  𝑚  →  ( 𝑤  /  𝑛 )  =  ( 𝑚  /  𝑛 ) ) | 
						
							| 112 | 110 111 | oveq12d | ⊢ ( 𝑤  =  𝑚  →  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  =  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) ) ) | 
						
							| 113 |  | 2fveq3 | ⊢ ( 𝑤  =  𝑚  →  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) )  =  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 114 | 110 | fveq2d | ⊢ ( 𝑤  =  𝑚  →  ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  =  ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) ) ) | 
						
							| 115 | 114 | eleq1d | ⊢ ( 𝑤  =  𝑚  →  ( ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏  ↔  ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 116 | 113 115 | riotaeqbidv | ⊢ ( 𝑤  =  𝑚  →  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 )  =  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) | 
						
							| 117 | 116 | reseq2d | ⊢ ( 𝑤  =  𝑚  →  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) )  =  ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ) | 
						
							| 118 | 117 | cnveqd | ⊢ ( 𝑤  =  𝑚  →  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) )  =  ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ) | 
						
							| 119 | 118 | fveq1d | ⊢ ( 𝑤  =  𝑚  →  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) )  =  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) | 
						
							| 120 | 112 119 | mpteq12dv | ⊢ ( 𝑤  =  𝑚  →  ( 𝑧  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑥 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) )  =  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 121 | 108 120 | cbvmpov | ⊢ ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  =  ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) | 
						
							| 122 |  | seqeq2 | ⊢ ( ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) )  =  ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) )  →  seq 0 ( ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) )  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ) | 
						
							| 123 | 121 122 | ax-mp | ⊢ seq 0 ( ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) )  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑛 ) [,] ( 𝑚  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑛 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 124 |  | eqid | ⊢ ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( seq 0 ( ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 𝑘 )  =  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( seq 0 ( ( 𝑦  ∈  V ,  𝑤  ∈  ℕ  ↦  ( 𝑡  ∈  ( ( ( 𝑤  −  1 )  /  𝑛 ) [,] ( 𝑤  /  𝑛 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑐  ∈  ( 2nd  ‘ ( 𝑔 ‘ 𝑤 ) ) ( 𝑦 ‘ ( ( 𝑤  −  1 )  /  𝑛 ) )  ∈  𝑐 ) ) ‘ ( 𝐺 ‘ 𝑡 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) ‘ 𝑘 ) | 
						
							| 125 | 1 2 3 81 82 83 84 85 93 94 95 123 124 | cvmliftlem14 | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ℕ )  ∧  ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 126 | 125 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 127 | 126 | exlimdv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∃ 𝑔 ( 𝑔 : ( 1 ... 𝑛 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) )  ∧  ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) ) )  ⊆  ( 1st  ‘ ( 𝑔 ‘ 𝑘 ) ) )  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 128 | 80 127 | syl5 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 129 | 128 | rexlimdva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℕ ∀ 𝑘  ∈  ( 1 ... 𝑛 ) ∃ 𝑣  ∈  { 𝑢  ∈  II  ∣  ∃ 𝑗  ∈  𝐽 ∃ 𝑠  ∈  ( 𝑆 ‘ 𝑗 ) ( 𝐺  “  𝑢 )  ⊆  𝑗 } ( ( ( 𝑘  −  1 )  /  𝑛 ) [,] ( 𝑘  /  𝑛 ) )  ⊆  𝑣  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 130 | 57 129 | mpd | ⊢ ( 𝜑  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) |