Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem.k |
⊢ 𝐾 = ∪ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem11 |
⊢ ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐾 ) = 𝐺 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐶 ) ) |
16 |
14
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐾 ) = 𝐺 ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem13 |
⊢ ( 𝜑 → ( 𝐾 ‘ 0 ) = 𝑃 ) |
18 |
|
coeq2 |
⊢ ( 𝑓 = 𝐾 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝐾 ) ) |
19 |
18
|
eqeq1d |
⊢ ( 𝑓 = 𝐾 → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ 𝐾 ) = 𝐺 ) ) |
20 |
|
fveq1 |
⊢ ( 𝑓 = 𝐾 → ( 𝑓 ‘ 0 ) = ( 𝐾 ‘ 0 ) ) |
21 |
20
|
eqeq1d |
⊢ ( 𝑓 = 𝐾 → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 𝐾 ‘ 0 ) = 𝑃 ) ) |
22 |
19 21
|
anbi12d |
⊢ ( 𝑓 = 𝐾 → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝐾 ) = 𝐺 ∧ ( 𝐾 ‘ 0 ) = 𝑃 ) ) ) |
23 |
22
|
rspcev |
⊢ ( ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( ( 𝐹 ∘ 𝐾 ) = 𝐺 ∧ ( 𝐾 ‘ 0 ) = 𝑃 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
24 |
15 16 17 23
|
syl12anc |
⊢ ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
25 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
26 |
|
iiconn |
⊢ II ∈ Conn |
27 |
26
|
a1i |
⊢ ( 𝜑 → II ∈ Conn ) |
28 |
|
iinllyconn |
⊢ II ∈ 𝑛-Locally Conn |
29 |
28
|
a1i |
⊢ ( 𝜑 → II ∈ 𝑛-Locally Conn ) |
30 |
|
0elunit |
⊢ 0 ∈ ( 0 [,] 1 ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] 1 ) ) |
32 |
2 25 4 27 29 31 5 6 7
|
cvmliftmo |
⊢ ( 𝜑 → ∃* 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |
33 |
|
reu5 |
⊢ ( ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ∧ ∃* 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) ) |
34 |
24 32 33
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) |