Metamath Proof Explorer


Theorem cvmliftlem14

Description: Lemma for cvmlift . Putting the results of cvmliftlem11 , cvmliftlem13 and cvmliftmo together, we have that K is a continuous function, satisfies F o. K = G and K ( 0 ) = P , and is equal to any other function which also has these properties, so it follows that K is the unique lift of G . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
cvmliftlem.k 𝐾 = 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄𝑘 )
Assertion cvmliftlem14 ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
13 cvmliftlem.k 𝐾 = 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄𝑘 )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem11 ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝐾 ) = 𝐺 ) )
15 14 simpld ( 𝜑𝐾 ∈ ( II Cn 𝐶 ) )
16 14 simprd ( 𝜑 → ( 𝐹𝐾 ) = 𝐺 )
17 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem13 ( 𝜑 → ( 𝐾 ‘ 0 ) = 𝑃 )
18 coeq2 ( 𝑓 = 𝐾 → ( 𝐹𝑓 ) = ( 𝐹𝐾 ) )
19 18 eqeq1d ( 𝑓 = 𝐾 → ( ( 𝐹𝑓 ) = 𝐺 ↔ ( 𝐹𝐾 ) = 𝐺 ) )
20 fveq1 ( 𝑓 = 𝐾 → ( 𝑓 ‘ 0 ) = ( 𝐾 ‘ 0 ) )
21 20 eqeq1d ( 𝑓 = 𝐾 → ( ( 𝑓 ‘ 0 ) = 𝑃 ↔ ( 𝐾 ‘ 0 ) = 𝑃 ) )
22 19 21 anbi12d ( 𝑓 = 𝐾 → ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝐹𝐾 ) = 𝐺 ∧ ( 𝐾 ‘ 0 ) = 𝑃 ) ) )
23 22 rspcev ( ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( ( 𝐹𝐾 ) = 𝐺 ∧ ( 𝐾 ‘ 0 ) = 𝑃 ) ) → ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
24 15 16 17 23 syl12anc ( 𝜑 → ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
25 iiuni ( 0 [,] 1 ) = II
26 iiconn II ∈ Conn
27 26 a1i ( 𝜑 → II ∈ Conn )
28 iinllyconn II ∈ 𝑛-Locally Conn
29 28 a1i ( 𝜑 → II ∈ 𝑛-Locally Conn )
30 0elunit 0 ∈ ( 0 [,] 1 )
31 30 a1i ( 𝜑 → 0 ∈ ( 0 [,] 1 ) )
32 2 25 4 27 29 31 5 6 7 cvmliftmo ( 𝜑 → ∃* 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )
33 reu5 ( ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ↔ ( ∃ 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ∧ ∃* 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) ) )
34 24 32 33 sylanbrc ( 𝜑 → ∃! 𝑓 ∈ ( II Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 0 ) = 𝑃 ) )