| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem.k | ⊢ 𝐾  =  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem11 | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  𝐺 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 16 | 14 | simprd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  =  𝐺 ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem13 | ⊢ ( 𝜑  →  ( 𝐾 ‘ 0 )  =  𝑃 ) | 
						
							| 18 |  | coeq2 | ⊢ ( 𝑓  =  𝐾  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  𝐾 ) ) | 
						
							| 19 | 18 | eqeq1d | ⊢ ( 𝑓  =  𝐾  →  ( ( 𝐹  ∘  𝑓 )  =  𝐺  ↔  ( 𝐹  ∘  𝐾 )  =  𝐺 ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑓  =  𝐾  →  ( 𝑓 ‘ 0 )  =  ( 𝐾 ‘ 0 ) ) | 
						
							| 21 | 20 | eqeq1d | ⊢ ( 𝑓  =  𝐾  →  ( ( 𝑓 ‘ 0 )  =  𝑃  ↔  ( 𝐾 ‘ 0 )  =  𝑃 ) ) | 
						
							| 22 | 19 21 | anbi12d | ⊢ ( 𝑓  =  𝐾  →  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝐾 )  =  𝐺  ∧  ( 𝐾 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 23 | 22 | rspcev | ⊢ ( ( 𝐾  ∈  ( II  Cn  𝐶 )  ∧  ( ( 𝐹  ∘  𝐾 )  =  𝐺  ∧  ( 𝐾 ‘ 0 )  =  𝑃 ) )  →  ∃ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 24 | 15 16 17 23 | syl12anc | ⊢ ( 𝜑  →  ∃ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 25 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 26 |  | iiconn | ⊢ II  ∈  Conn | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  II  ∈  Conn ) | 
						
							| 28 |  | iinllyconn | ⊢ II  ∈  𝑛-Locally  Conn | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  II  ∈  𝑛-Locally  Conn ) | 
						
							| 30 |  | 0elunit | ⊢ 0  ∈  ( 0 [,] 1 ) | 
						
							| 31 | 30 | a1i | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] 1 ) ) | 
						
							| 32 | 2 25 4 27 29 31 5 6 7 | cvmliftmo | ⊢ ( 𝜑  →  ∃* 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) | 
						
							| 33 |  | reu5 | ⊢ ( ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 )  ↔  ( ∃ 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 )  ∧  ∃* 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 34 | 24 32 33 | sylanbrc | ⊢ ( 𝜑  →  ∃! 𝑓  ∈  ( II  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 0 )  =  𝑃 ) ) |