| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftmo.b |
⊢ 𝐵 = ∪ 𝐶 |
| 2 |
|
cvmliftmo.y |
⊢ 𝑌 = ∪ 𝐾 |
| 3 |
|
cvmliftmo.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 4 |
|
cvmliftmo.k |
⊢ ( 𝜑 → 𝐾 ∈ Conn ) |
| 5 |
|
cvmliftmo.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Conn ) |
| 6 |
|
cvmliftmo.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
| 7 |
|
cvmliftmo.g |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 8 |
|
cvmliftmo.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
| 9 |
|
cvmliftmo.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑂 ) ) |
| 10 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
| 11 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝐾 ∈ Conn ) |
| 12 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝐾 ∈ 𝑛-Locally Conn ) |
| 13 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝑂 ∈ 𝑌 ) |
| 14 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ) |
| 15 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) |
| 16 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝐹 ∘ 𝑓 ) = 𝐺 ) |
| 17 |
|
simprrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝐹 ∘ 𝑔 ) = 𝐺 ) |
| 18 |
16 17
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑔 ) ) |
| 19 |
|
simprlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝑓 ‘ 𝑂 ) = 𝑃 ) |
| 20 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝑔 ‘ 𝑂 ) = 𝑃 ) |
| 21 |
19 20
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → ( 𝑓 ‘ 𝑂 ) = ( 𝑔 ‘ 𝑂 ) ) |
| 22 |
1 2 10 11 12 13 14 15 18 21
|
cvmliftmoi |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) → 𝑓 = 𝑔 ) |
| 23 |
22
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) → ( ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) ) |
| 24 |
23
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∀ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ( ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) ) |
| 25 |
|
coeq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑔 ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ↔ ( 𝐹 ∘ 𝑔 ) = 𝐺 ) ) |
| 27 |
|
fveq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 ‘ 𝑂 ) = ( 𝑔 ‘ 𝑂 ) ) |
| 28 |
27
|
eqeq1d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ‘ 𝑂 ) = 𝑃 ↔ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) |
| 29 |
26 28
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ↔ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) ) |
| 30 |
29
|
rmo4 |
⊢ ( ∃* 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ↔ ∀ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∀ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ( ( ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ∧ ( ( 𝐹 ∘ 𝑔 ) = 𝐺 ∧ ( 𝑔 ‘ 𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) ) |
| 31 |
24 30
|
sylibr |
⊢ ( 𝜑 → ∃* 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹 ∘ 𝑓 ) = 𝐺 ∧ ( 𝑓 ‘ 𝑂 ) = 𝑃 ) ) |