Metamath Proof Explorer


Theorem cvmliftmo

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftmo.k ( 𝜑𝐾 ∈ Conn )
cvmliftmo.l ( 𝜑𝐾 ∈ 𝑛-Locally Conn )
cvmliftmo.o ( 𝜑𝑂𝑌 )
cvmliftmo.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
cvmliftmo.p ( 𝜑𝑃𝐵 )
cvmliftmo.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
Assertion cvmliftmo ( 𝜑 → ∃* 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) )

Proof

Step Hyp Ref Expression
1 cvmliftmo.b 𝐵 = 𝐶
2 cvmliftmo.y 𝑌 = 𝐾
3 cvmliftmo.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
4 cvmliftmo.k ( 𝜑𝐾 ∈ Conn )
5 cvmliftmo.l ( 𝜑𝐾 ∈ 𝑛-Locally Conn )
6 cvmliftmo.o ( 𝜑𝑂𝑌 )
7 cvmliftmo.g ( 𝜑𝐺 ∈ ( 𝐾 Cn 𝐽 ) )
8 cvmliftmo.p ( 𝜑𝑃𝐵 )
9 cvmliftmo.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺𝑂 ) )
10 3 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
11 4 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝐾 ∈ Conn )
12 5 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝐾 ∈ 𝑛-Locally Conn )
13 6 ad2antrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝑂𝑌 )
14 simplrl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝑓 ∈ ( 𝐾 Cn 𝐶 ) )
15 simplrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝑔 ∈ ( 𝐾 Cn 𝐶 ) )
16 simprll ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝐹𝑓 ) = 𝐺 )
17 simprrl ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝐹𝑔 ) = 𝐺 )
18 16 17 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝐹𝑓 ) = ( 𝐹𝑔 ) )
19 simprlr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝑓𝑂 ) = 𝑃 )
20 simprrr ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝑔𝑂 ) = 𝑃 )
21 19 20 eqtr4d ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → ( 𝑓𝑂 ) = ( 𝑔𝑂 ) )
22 1 2 10 11 12 13 14 15 18 21 cvmliftmoi ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) ∧ ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) ) → 𝑓 = 𝑔 )
23 22 ex ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∧ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ) ) → ( ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) )
24 23 ralrimivva ( 𝜑 → ∀ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∀ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ( ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) )
25 coeq2 ( 𝑓 = 𝑔 → ( 𝐹𝑓 ) = ( 𝐹𝑔 ) )
26 25 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝐹𝑓 ) = 𝐺 ↔ ( 𝐹𝑔 ) = 𝐺 ) )
27 fveq1 ( 𝑓 = 𝑔 → ( 𝑓𝑂 ) = ( 𝑔𝑂 ) )
28 27 eqeq1d ( 𝑓 = 𝑔 → ( ( 𝑓𝑂 ) = 𝑃 ↔ ( 𝑔𝑂 ) = 𝑃 ) )
29 26 28 anbi12d ( 𝑓 = 𝑔 → ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ↔ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) )
30 29 rmo4 ( ∃* 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ↔ ∀ 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ∀ 𝑔 ∈ ( 𝐾 Cn 𝐶 ) ( ( ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) ∧ ( ( 𝐹𝑔 ) = 𝐺 ∧ ( 𝑔𝑂 ) = 𝑃 ) ) → 𝑓 = 𝑔 ) )
31 24 30 sylibr ( 𝜑 → ∃* 𝑓 ∈ ( 𝐾 Cn 𝐶 ) ( ( 𝐹𝑓 ) = 𝐺 ∧ ( 𝑓𝑂 ) = 𝑃 ) )