| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftmo.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmliftmo.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmliftmo.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmliftmo.k | ⊢ ( 𝜑  →  𝐾  ∈  Conn ) | 
						
							| 5 |  | cvmliftmo.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  Conn ) | 
						
							| 6 |  | cvmliftmo.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmliftmo.g | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 8 |  | cvmliftmo.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 9 |  | cvmliftmo.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑂 ) ) | 
						
							| 10 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 11 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝐾  ∈  Conn ) | 
						
							| 12 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝐾  ∈  𝑛-Locally  Conn ) | 
						
							| 13 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝑂  ∈  𝑌 ) | 
						
							| 14 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝑓  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 15 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 16 |  | simprll | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝐹  ∘  𝑓 )  =  𝐺 ) | 
						
							| 17 |  | simprrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝐹  ∘  𝑔 )  =  𝐺 ) | 
						
							| 18 | 16 17 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 19 |  | simprlr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝑓 ‘ 𝑂 )  =  𝑃 ) | 
						
							| 20 |  | simprrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) | 
						
							| 21 | 19 20 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  ( 𝑓 ‘ 𝑂 )  =  ( 𝑔 ‘ 𝑂 ) ) | 
						
							| 22 | 1 2 10 11 12 13 14 15 18 21 | cvmliftmoi | ⊢ ( ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  ∧  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) )  →  𝑓  =  𝑔 ) | 
						
							| 23 | 22 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑓  ∈  ( 𝐾  Cn  𝐶 )  ∧  𝑔  ∈  ( 𝐾  Cn  𝐶 ) ) )  →  ( ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 24 | 23 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ∀ 𝑔  ∈  ( 𝐾  Cn  𝐶 ) ( ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 25 |  | coeq2 | ⊢ ( 𝑓  =  𝑔  →  ( 𝐹  ∘  𝑓 )  =  ( 𝐹  ∘  𝑔 ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝐹  ∘  𝑓 )  =  𝐺  ↔  ( 𝐹  ∘  𝑔 )  =  𝐺 ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑓  =  𝑔  →  ( 𝑓 ‘ 𝑂 )  =  ( 𝑔 ‘ 𝑂 ) ) | 
						
							| 28 | 27 | eqeq1d | ⊢ ( 𝑓  =  𝑔  →  ( ( 𝑓 ‘ 𝑂 )  =  𝑃  ↔  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) | 
						
							| 29 | 26 28 | anbi12d | ⊢ ( 𝑓  =  𝑔  →  ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ↔  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) ) ) | 
						
							| 30 | 29 | rmo4 | ⊢ ( ∃* 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ↔  ∀ 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ∀ 𝑔  ∈  ( 𝐾  Cn  𝐶 ) ( ( ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 )  ∧  ( ( 𝐹  ∘  𝑔 )  =  𝐺  ∧  ( 𝑔 ‘ 𝑂 )  =  𝑃 ) )  →  𝑓  =  𝑔 ) ) | 
						
							| 31 | 24 30 | sylibr | ⊢ ( 𝜑  →  ∃* 𝑓  ∈  ( 𝐾  Cn  𝐶 ) ( ( 𝐹  ∘  𝑓 )  =  𝐺  ∧  ( 𝑓 ‘ 𝑂 )  =  𝑃 ) ) |