Metamath Proof Explorer


Theorem cvmliftmo

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by NM, 17-Jun-2017)

Ref Expression
Hypotheses cvmliftmo.b B = C
cvmliftmo.y Y = K
cvmliftmo.f φ F C CovMap J
cvmliftmo.k φ K Conn
cvmliftmo.l φ K N-Locally Conn
cvmliftmo.o φ O Y
cvmliftmo.g φ G K Cn J
cvmliftmo.p φ P B
cvmliftmo.e φ F P = G O
Assertion cvmliftmo φ * f K Cn C F f = G f O = P

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B = C
2 cvmliftmo.y Y = K
3 cvmliftmo.f φ F C CovMap J
4 cvmliftmo.k φ K Conn
5 cvmliftmo.l φ K N-Locally Conn
6 cvmliftmo.o φ O Y
7 cvmliftmo.g φ G K Cn J
8 cvmliftmo.p φ P B
9 cvmliftmo.e φ F P = G O
10 3 ad2antrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P F C CovMap J
11 4 ad2antrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P K Conn
12 5 ad2antrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P K N-Locally Conn
13 6 ad2antrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P O Y
14 simplrl φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f K Cn C
15 simplrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P g K Cn C
16 simprll φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P F f = G
17 simprrl φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P F g = G
18 16 17 eqtr4d φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P F f = F g
19 simprlr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f O = P
20 simprrr φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P g O = P
21 19 20 eqtr4d φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f O = g O
22 1 2 10 11 12 13 14 15 18 21 cvmliftmoi φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f = g
23 22 ex φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f = g
24 23 ralrimivva φ f K Cn C g K Cn C F f = G f O = P F g = G g O = P f = g
25 coeq2 f = g F f = F g
26 25 eqeq1d f = g F f = G F g = G
27 fveq1 f = g f O = g O
28 27 eqeq1d f = g f O = P g O = P
29 26 28 anbi12d f = g F f = G f O = P F g = G g O = P
30 29 rmo4 * f K Cn C F f = G f O = P f K Cn C g K Cn C F f = G f O = P F g = G g O = P f = g
31 24 30 sylibr φ * f K Cn C F f = G f O = P