Metamath Proof Explorer


Theorem cvmliftmoi

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b B=C
cvmliftmo.y Y=K
cvmliftmo.f φFCCovMapJ
cvmliftmo.k φKConn
cvmliftmo.l φKN-Locally Conn
cvmliftmo.o φOY
cvmliftmoi.m φMKCnC
cvmliftmoi.n φNKCnC
cvmliftmoi.g φFM=FN
cvmliftmoi.p φMO=NO
Assertion cvmliftmoi φM=N

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B=C
2 cvmliftmo.y Y=K
3 cvmliftmo.f φFCCovMapJ
4 cvmliftmo.k φKConn
5 cvmliftmo.l φKN-Locally Conn
6 cvmliftmo.o φOY
7 cvmliftmoi.m φMKCnC
8 cvmliftmoi.n φNKCnC
9 cvmliftmoi.g φFM=FN
10 cvmliftmoi.p φMO=NO
11 eqid kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
12 11 cvmscbv kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k=bJm𝒫C|m=F-1brmwmrrw=FrC𝑡rHomeoJ𝑡b
13 1 2 3 4 5 6 7 8 9 10 12 cvmliftmolem2 φM=N