Metamath Proof Explorer


Theorem cvmliftmoi

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b B = C
cvmliftmo.y Y = K
cvmliftmo.f φ F C CovMap J
cvmliftmo.k φ K Conn
cvmliftmo.l φ K N-Locally Conn
cvmliftmo.o φ O Y
cvmliftmoi.m φ M K Cn C
cvmliftmoi.n φ N K Cn C
cvmliftmoi.g φ F M = F N
cvmliftmoi.p φ M O = N O
Assertion cvmliftmoi φ M = N

Proof

Step Hyp Ref Expression
1 cvmliftmo.b B = C
2 cvmliftmo.y Y = K
3 cvmliftmo.f φ F C CovMap J
4 cvmliftmo.k φ K Conn
5 cvmliftmo.l φ K N-Locally Conn
6 cvmliftmo.o φ O Y
7 cvmliftmoi.m φ M K Cn C
8 cvmliftmoi.n φ N K Cn C
9 cvmliftmoi.g φ F M = F N
10 cvmliftmoi.p φ M O = N O
11 eqid k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
12 11 cvmscbv k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k = b J m 𝒫 C | m = F -1 b r m w m r r w = F r C 𝑡 r Homeo J 𝑡 b
13 1 2 3 4 5 6 7 8 9 10 12 cvmliftmolem2 φ M = N