Metamath Proof Explorer


Theorem cvmliftmoi

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b
|- B = U. C
cvmliftmo.y
|- Y = U. K
cvmliftmo.f
|- ( ph -> F e. ( C CovMap J ) )
cvmliftmo.k
|- ( ph -> K e. Conn )
cvmliftmo.l
|- ( ph -> K e. N-Locally Conn )
cvmliftmo.o
|- ( ph -> O e. Y )
cvmliftmoi.m
|- ( ph -> M e. ( K Cn C ) )
cvmliftmoi.n
|- ( ph -> N e. ( K Cn C ) )
cvmliftmoi.g
|- ( ph -> ( F o. M ) = ( F o. N ) )
cvmliftmoi.p
|- ( ph -> ( M ` O ) = ( N ` O ) )
Assertion cvmliftmoi
|- ( ph -> M = N )

Proof

Step Hyp Ref Expression
1 cvmliftmo.b
 |-  B = U. C
2 cvmliftmo.y
 |-  Y = U. K
3 cvmliftmo.f
 |-  ( ph -> F e. ( C CovMap J ) )
4 cvmliftmo.k
 |-  ( ph -> K e. Conn )
5 cvmliftmo.l
 |-  ( ph -> K e. N-Locally Conn )
6 cvmliftmo.o
 |-  ( ph -> O e. Y )
7 cvmliftmoi.m
 |-  ( ph -> M e. ( K Cn C ) )
8 cvmliftmoi.n
 |-  ( ph -> N e. ( K Cn C ) )
9 cvmliftmoi.g
 |-  ( ph -> ( F o. M ) = ( F o. N ) )
10 cvmliftmoi.p
 |-  ( ph -> ( M ` O ) = ( N ` O ) )
11 eqid
 |-  ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
12 11 cvmscbv
 |-  ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) = ( b e. J |-> { m e. ( ~P C \ { (/) } ) | ( U. m = ( `' F " b ) /\ A. r e. m ( A. w e. ( m \ { r } ) ( r i^i w ) = (/) /\ ( F |` r ) e. ( ( C |`t r ) Homeo ( J |`t b ) ) ) ) } )
13 1 2 3 4 5 6 7 8 9 10 12 cvmliftmolem2
 |-  ( ph -> M = N )