Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftmo.b |
⊢ 𝐵 = ∪ 𝐶 |
2 |
|
cvmliftmo.y |
⊢ 𝑌 = ∪ 𝐾 |
3 |
|
cvmliftmo.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
4 |
|
cvmliftmo.k |
⊢ ( 𝜑 → 𝐾 ∈ Conn ) |
5 |
|
cvmliftmo.l |
⊢ ( 𝜑 → 𝐾 ∈ 𝑛-Locally Conn ) |
6 |
|
cvmliftmo.o |
⊢ ( 𝜑 → 𝑂 ∈ 𝑌 ) |
7 |
|
cvmliftmoi.m |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐾 Cn 𝐶 ) ) |
8 |
|
cvmliftmoi.n |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝐾 Cn 𝐶 ) ) |
9 |
|
cvmliftmoi.g |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝑀 ) = ( 𝐹 ∘ 𝑁 ) ) |
10 |
|
cvmliftmoi.p |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑂 ) = ( 𝑁 ‘ 𝑂 ) ) |
11 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
12 |
11
|
cvmscbv |
⊢ ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) = ( 𝑏 ∈ 𝐽 ↦ { 𝑚 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑚 = ( ◡ 𝐹 “ 𝑏 ) ∧ ∀ 𝑟 ∈ 𝑚 ( ∀ 𝑤 ∈ ( 𝑚 ∖ { 𝑟 } ) ( 𝑟 ∩ 𝑤 ) = ∅ ∧ ( 𝐹 ↾ 𝑟 ) ∈ ( ( 𝐶 ↾t 𝑟 ) Homeo ( 𝐽 ↾t 𝑏 ) ) ) ) } ) |
13 |
1 2 3 4 5 6 7 8 9 10 12
|
cvmliftmolem2 |
⊢ ( 𝜑 → 𝑀 = 𝑁 ) |