| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftmo.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 2 |  | cvmliftmo.y | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | cvmliftmo.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 4 |  | cvmliftmo.k | ⊢ ( 𝜑  →  𝐾  ∈  Conn ) | 
						
							| 5 |  | cvmliftmo.l | ⊢ ( 𝜑  →  𝐾  ∈  𝑛-Locally  Conn ) | 
						
							| 6 |  | cvmliftmo.o | ⊢ ( 𝜑  →  𝑂  ∈  𝑌 ) | 
						
							| 7 |  | cvmliftmoi.m | ⊢ ( 𝜑  →  𝑀  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 8 |  | cvmliftmoi.n | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝐾  Cn  𝐶 ) ) | 
						
							| 9 |  | cvmliftmoi.g | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝑀 )  =  ( 𝐹  ∘  𝑁 ) ) | 
						
							| 10 |  | cvmliftmoi.p | ⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑂 )  =  ( 𝑁 ‘ 𝑂 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 12 | 11 | cvmscbv | ⊢ ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } )  =  ( 𝑏  ∈  𝐽  ↦  { 𝑚  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑚  =  ( ◡ 𝐹  “  𝑏 )  ∧  ∀ 𝑟  ∈  𝑚 ( ∀ 𝑤  ∈  ( 𝑚  ∖  { 𝑟 } ) ( 𝑟  ∩  𝑤 )  =  ∅  ∧  ( 𝐹  ↾  𝑟 )  ∈  ( ( 𝐶  ↾t  𝑟 ) Homeo ( 𝐽  ↾t  𝑏 ) ) ) ) } ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 12 | cvmliftmolem2 | ⊢ ( 𝜑  →  𝑀  =  𝑁 ) |