Metamath Proof Explorer


Theorem cvmliftmoi

Description: A lift of a continuous function from a connected and locally connected space over a covering map is unique when it exists. (Contributed by Mario Carneiro, 10-Mar-2015)

Ref Expression
Hypotheses cvmliftmo.b 𝐵 = 𝐶
cvmliftmo.y 𝑌 = 𝐾
cvmliftmo.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftmo.k ( 𝜑𝐾 ∈ Conn )
cvmliftmo.l ( 𝜑𝐾 ∈ 𝑛-Locally Conn )
cvmliftmo.o ( 𝜑𝑂𝑌 )
cvmliftmoi.m ( 𝜑𝑀 ∈ ( 𝐾 Cn 𝐶 ) )
cvmliftmoi.n ( 𝜑𝑁 ∈ ( 𝐾 Cn 𝐶 ) )
cvmliftmoi.g ( 𝜑 → ( 𝐹𝑀 ) = ( 𝐹𝑁 ) )
cvmliftmoi.p ( 𝜑 → ( 𝑀𝑂 ) = ( 𝑁𝑂 ) )
Assertion cvmliftmoi ( 𝜑𝑀 = 𝑁 )

Proof

Step Hyp Ref Expression
1 cvmliftmo.b 𝐵 = 𝐶
2 cvmliftmo.y 𝑌 = 𝐾
3 cvmliftmo.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
4 cvmliftmo.k ( 𝜑𝐾 ∈ Conn )
5 cvmliftmo.l ( 𝜑𝐾 ∈ 𝑛-Locally Conn )
6 cvmliftmo.o ( 𝜑𝑂𝑌 )
7 cvmliftmoi.m ( 𝜑𝑀 ∈ ( 𝐾 Cn 𝐶 ) )
8 cvmliftmoi.n ( 𝜑𝑁 ∈ ( 𝐾 Cn 𝐶 ) )
9 cvmliftmoi.g ( 𝜑 → ( 𝐹𝑀 ) = ( 𝐹𝑁 ) )
10 cvmliftmoi.p ( 𝜑 → ( 𝑀𝑂 ) = ( 𝑁𝑂 ) )
11 eqid ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ) = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
12 11 cvmscbv ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } ) = ( 𝑏𝐽 ↦ { 𝑚 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑚 = ( 𝐹𝑏 ) ∧ ∀ 𝑟𝑚 ( ∀ 𝑤 ∈ ( 𝑚 ∖ { 𝑟 } ) ( 𝑟𝑤 ) = ∅ ∧ ( 𝐹𝑟 ) ∈ ( ( 𝐶t 𝑟 ) Homeo ( 𝐽t 𝑏 ) ) ) ) } )
13 1 2 3 4 5 6 7 8 9 10 12 cvmliftmolem2 ( 𝜑𝑀 = 𝑁 )