| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftmo.b |  |-  B = U. C | 
						
							| 2 |  | cvmliftmo.y |  |-  Y = U. K | 
						
							| 3 |  | cvmliftmo.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 4 |  | cvmliftmo.k |  |-  ( ph -> K e. Conn ) | 
						
							| 5 |  | cvmliftmo.l |  |-  ( ph -> K e. N-Locally Conn ) | 
						
							| 6 |  | cvmliftmo.o |  |-  ( ph -> O e. Y ) | 
						
							| 7 |  | cvmliftmo.g |  |-  ( ph -> G e. ( K Cn J ) ) | 
						
							| 8 |  | cvmliftmo.p |  |-  ( ph -> P e. B ) | 
						
							| 9 |  | cvmliftmo.e |  |-  ( ph -> ( F ` P ) = ( G ` O ) ) | 
						
							| 10 | 3 | ad2antrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> F e. ( C CovMap J ) ) | 
						
							| 11 | 4 | ad2antrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> K e. Conn ) | 
						
							| 12 | 5 | ad2antrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> K e. N-Locally Conn ) | 
						
							| 13 | 6 | ad2antrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> O e. Y ) | 
						
							| 14 |  | simplrl |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> f e. ( K Cn C ) ) | 
						
							| 15 |  | simplrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> g e. ( K Cn C ) ) | 
						
							| 16 |  | simprll |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. f ) = G ) | 
						
							| 17 |  | simprrl |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. g ) = G ) | 
						
							| 18 | 16 17 | eqtr4d |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. f ) = ( F o. g ) ) | 
						
							| 19 |  | simprlr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( f ` O ) = P ) | 
						
							| 20 |  | simprrr |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( g ` O ) = P ) | 
						
							| 21 | 19 20 | eqtr4d |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( f ` O ) = ( g ` O ) ) | 
						
							| 22 | 1 2 10 11 12 13 14 15 18 21 | cvmliftmoi |  |-  ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> f = g ) | 
						
							| 23 | 22 | ex |  |-  ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) -> ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) | 
						
							| 24 | 23 | ralrimivva |  |-  ( ph -> A. f e. ( K Cn C ) A. g e. ( K Cn C ) ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) | 
						
							| 25 |  | coeq2 |  |-  ( f = g -> ( F o. f ) = ( F o. g ) ) | 
						
							| 26 | 25 | eqeq1d |  |-  ( f = g -> ( ( F o. f ) = G <-> ( F o. g ) = G ) ) | 
						
							| 27 |  | fveq1 |  |-  ( f = g -> ( f ` O ) = ( g ` O ) ) | 
						
							| 28 | 27 | eqeq1d |  |-  ( f = g -> ( ( f ` O ) = P <-> ( g ` O ) = P ) ) | 
						
							| 29 | 26 28 | anbi12d |  |-  ( f = g -> ( ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) | 
						
							| 30 | 29 | rmo4 |  |-  ( E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> A. f e. ( K Cn C ) A. g e. ( K Cn C ) ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) | 
						
							| 31 | 24 30 | sylibr |  |-  ( ph -> E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |