| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftmo.b |
|- B = U. C |
| 2 |
|
cvmliftmo.y |
|- Y = U. K |
| 3 |
|
cvmliftmo.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 4 |
|
cvmliftmo.k |
|- ( ph -> K e. Conn ) |
| 5 |
|
cvmliftmo.l |
|- ( ph -> K e. N-Locally Conn ) |
| 6 |
|
cvmliftmo.o |
|- ( ph -> O e. Y ) |
| 7 |
|
cvmliftmo.g |
|- ( ph -> G e. ( K Cn J ) ) |
| 8 |
|
cvmliftmo.p |
|- ( ph -> P e. B ) |
| 9 |
|
cvmliftmo.e |
|- ( ph -> ( F ` P ) = ( G ` O ) ) |
| 10 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> F e. ( C CovMap J ) ) |
| 11 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> K e. Conn ) |
| 12 |
5
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> K e. N-Locally Conn ) |
| 13 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> O e. Y ) |
| 14 |
|
simplrl |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> f e. ( K Cn C ) ) |
| 15 |
|
simplrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> g e. ( K Cn C ) ) |
| 16 |
|
simprll |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. f ) = G ) |
| 17 |
|
simprrl |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. g ) = G ) |
| 18 |
16 17
|
eqtr4d |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( F o. f ) = ( F o. g ) ) |
| 19 |
|
simprlr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( f ` O ) = P ) |
| 20 |
|
simprrr |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( g ` O ) = P ) |
| 21 |
19 20
|
eqtr4d |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> ( f ` O ) = ( g ` O ) ) |
| 22 |
1 2 10 11 12 13 14 15 18 21
|
cvmliftmoi |
|- ( ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) /\ ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) -> f = g ) |
| 23 |
22
|
ex |
|- ( ( ph /\ ( f e. ( K Cn C ) /\ g e. ( K Cn C ) ) ) -> ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) |
| 24 |
23
|
ralrimivva |
|- ( ph -> A. f e. ( K Cn C ) A. g e. ( K Cn C ) ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) |
| 25 |
|
coeq2 |
|- ( f = g -> ( F o. f ) = ( F o. g ) ) |
| 26 |
25
|
eqeq1d |
|- ( f = g -> ( ( F o. f ) = G <-> ( F o. g ) = G ) ) |
| 27 |
|
fveq1 |
|- ( f = g -> ( f ` O ) = ( g ` O ) ) |
| 28 |
27
|
eqeq1d |
|- ( f = g -> ( ( f ` O ) = P <-> ( g ` O ) = P ) ) |
| 29 |
26 28
|
anbi12d |
|- ( f = g -> ( ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> ( ( F o. g ) = G /\ ( g ` O ) = P ) ) ) |
| 30 |
29
|
rmo4 |
|- ( E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) <-> A. f e. ( K Cn C ) A. g e. ( K Cn C ) ( ( ( ( F o. f ) = G /\ ( f ` O ) = P ) /\ ( ( F o. g ) = G /\ ( g ` O ) = P ) ) -> f = g ) ) |
| 31 |
24 30
|
sylibr |
|- ( ph -> E* f e. ( K Cn C ) ( ( F o. f ) = G /\ ( f ` O ) = P ) ) |