Metamath Proof Explorer


Theorem cvmliftlem11

Description: Lemma for cvmlift . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
cvmliftlem.b 𝐵 = 𝐶
cvmliftlem.x 𝑋 = 𝐽
cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
cvmliftlem.p ( 𝜑𝑃𝐵 )
cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
cvmliftlem.k 𝐾 = 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄𝑘 )
Assertion cvmliftlem11 ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝐾 ) = 𝐺 ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 𝑆 = ( 𝑘𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( 𝑠 = ( 𝐹𝑘 ) ∧ ∀ 𝑢𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢𝑣 ) = ∅ ∧ ( 𝐹𝑢 ) ∈ ( ( 𝐶t 𝑢 ) Homeo ( 𝐽t 𝑘 ) ) ) ) } )
2 cvmliftlem.b 𝐵 = 𝐶
3 cvmliftlem.x 𝑋 = 𝐽
4 cvmliftlem.f ( 𝜑𝐹 ∈ ( 𝐶 CovMap 𝐽 ) )
5 cvmliftlem.g ( 𝜑𝐺 ∈ ( II Cn 𝐽 ) )
6 cvmliftlem.p ( 𝜑𝑃𝐵 )
7 cvmliftlem.e ( 𝜑 → ( 𝐹𝑃 ) = ( 𝐺 ‘ 0 ) )
8 cvmliftlem.n ( 𝜑𝑁 ∈ ℕ )
9 cvmliftlem.t ( 𝜑𝑇 : ( 1 ... 𝑁 ) ⟶ 𝑗𝐽 ( { 𝑗 } × ( 𝑆𝑗 ) ) )
10 cvmliftlem.a ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇𝑘 ) ) )
11 cvmliftlem.l 𝐿 = ( topGen ‘ ran (,) )
12 cvmliftlem.q 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ( 𝐹 ↾ ( 𝑏 ∈ ( 2nd ‘ ( 𝑇𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { ⟨ 0 , { ⟨ 0 , 𝑃 ⟩ } ⟩ } ) )
13 cvmliftlem.k 𝐾 = 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄𝑘 )
14 biid ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄𝑘 ) ∈ ( ( 𝐿t ( 0 [,] ( 𝑛 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄𝑘 ) ) = ( 𝐺 ↾ ( 0 [,] ( 𝑛 / 𝑁 ) ) ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ) ∧ ( 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄𝑘 ) ∈ ( ( 𝐿t ( 0 [,] ( 𝑛 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄𝑘 ) ) = ( 𝐺 ↾ ( 0 [,] ( 𝑛 / 𝑁 ) ) ) ) ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cvmliftlem10 ( 𝜑 → ( 𝐾 ∈ ( ( 𝐿t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹𝐾 ) = ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) ) )
16 15 simpld ( 𝜑𝐾 ∈ ( ( 𝐿t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) )
17 11 a1i ( 𝜑𝐿 = ( topGen ‘ ran (,) ) )
18 8 nncnd ( 𝜑𝑁 ∈ ℂ )
19 8 nnne0d ( 𝜑𝑁 ≠ 0 )
20 18 19 dividd ( 𝜑 → ( 𝑁 / 𝑁 ) = 1 )
21 20 oveq2d ( 𝜑 → ( 0 [,] ( 𝑁 / 𝑁 ) ) = ( 0 [,] 1 ) )
22 17 21 oveq12d ( 𝜑 → ( 𝐿t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) )
23 dfii2 II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) )
24 22 23 eqtr4di ( 𝜑 → ( 𝐿t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = II )
25 24 oveq1d ( 𝜑 → ( ( 𝐿t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) = ( II Cn 𝐶 ) )
26 16 25 eleqtrd ( 𝜑𝐾 ∈ ( II Cn 𝐶 ) )
27 15 simprd ( 𝜑 → ( 𝐹𝐾 ) = ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) )
28 21 reseq2d ( 𝜑 → ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = ( 𝐺 ↾ ( 0 [,] 1 ) ) )
29 iiuni ( 0 [,] 1 ) = II
30 29 3 cnf ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 )
31 ffn ( 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋𝐺 Fn ( 0 [,] 1 ) )
32 fnresdm ( 𝐺 Fn ( 0 [,] 1 ) → ( 𝐺 ↾ ( 0 [,] 1 ) ) = 𝐺 )
33 5 30 31 32 4syl ( 𝜑 → ( 𝐺 ↾ ( 0 [,] 1 ) ) = 𝐺 )
34 27 28 33 3eqtrd ( 𝜑 → ( 𝐹𝐾 ) = 𝐺 )
35 26 34 jca ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹𝐾 ) = 𝐺 ) )