| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem.k | ⊢ 𝐾  =  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) | 
						
							| 14 |  | biid | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) )  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | cvmliftlem10 | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) | 
						
							| 16 | 15 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 17 | 11 | a1i | ⊢ ( 𝜑  →  𝐿  =  ( topGen ‘ ran  (,) ) ) | 
						
							| 18 | 8 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 19 | 8 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 20 | 18 19 | dividd | ⊢ ( 𝜑  →  ( 𝑁  /  𝑁 )  =  1 ) | 
						
							| 21 | 20 | oveq2d | ⊢ ( 𝜑  →  ( 0 [,] ( 𝑁  /  𝑁 ) )  =  ( 0 [,] 1 ) ) | 
						
							| 22 | 17 21 | oveq12d | ⊢ ( 𝜑  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) ) | 
						
							| 23 |  | dfii2 | ⊢ II  =  ( ( topGen ‘ ran  (,) )  ↾t  ( 0 [,] 1 ) ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( 𝜑  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  =  II ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  =  ( II  Cn  𝐶 ) ) | 
						
							| 26 | 16 25 | eleqtrd | ⊢ ( 𝜑  →  𝐾  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 27 | 15 | simprd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) | 
						
							| 28 | 21 | reseq2d | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] 1 ) ) ) | 
						
							| 29 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 30 | 29 3 | cnf | ⊢ ( 𝐺  ∈  ( II  Cn  𝐽 )  →  𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) | 
						
							| 31 |  | ffn | ⊢ ( 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋  →  𝐺  Fn  ( 0 [,] 1 ) ) | 
						
							| 32 |  | fnresdm | ⊢ ( 𝐺  Fn  ( 0 [,] 1 )  →  ( 𝐺  ↾  ( 0 [,] 1 ) )  =  𝐺 ) | 
						
							| 33 | 5 30 31 32 | 4syl | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( 0 [,] 1 ) )  =  𝐺 ) | 
						
							| 34 | 27 28 33 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐹  ∘  𝐾 )  =  𝐺 ) | 
						
							| 35 | 26 34 | jca | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  𝐺 ) ) |