Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem.k |
⊢ 𝐾 = ∪ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) |
14 |
|
biid |
⊢ ( ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ∈ ( ( 𝐿 ↾t ( 0 [,] ( 𝑛 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹 ∘ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) = ( 𝐺 ↾ ( 0 [,] ( 𝑛 / 𝑁 ) ) ) ) ) ↔ ( ( 𝑛 ∈ ℕ ∧ ( 𝑛 + 1 ) ∈ ( 1 ... 𝑁 ) ) ∧ ( ∪ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ∈ ( ( 𝐿 ↾t ( 0 [,] ( 𝑛 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹 ∘ ∪ 𝑘 ∈ ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) = ( 𝐺 ↾ ( 0 [,] ( 𝑛 / 𝑁 ) ) ) ) ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cvmliftlem10 |
⊢ ( 𝜑 → ( 𝐾 ∈ ( ( 𝐿 ↾t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐾 ) = ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) ) ) |
16 |
15
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( ( 𝐿 ↾t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) ) |
17 |
11
|
a1i |
⊢ ( 𝜑 → 𝐿 = ( topGen ‘ ran (,) ) ) |
18 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
19 |
8
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
20 |
18 19
|
dividd |
⊢ ( 𝜑 → ( 𝑁 / 𝑁 ) = 1 ) |
21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( 0 [,] ( 𝑁 / 𝑁 ) ) = ( 0 [,] 1 ) ) |
22 |
17 21
|
oveq12d |
⊢ ( 𝜑 → ( 𝐿 ↾t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) ) |
23 |
|
dfii2 |
⊢ II = ( ( topGen ‘ ran (,) ) ↾t ( 0 [,] 1 ) ) |
24 |
22 23
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐿 ↾t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = II ) |
25 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐿 ↾t ( 0 [,] ( 𝑁 / 𝑁 ) ) ) Cn 𝐶 ) = ( II Cn 𝐶 ) ) |
26 |
16 25
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐶 ) ) |
27 |
15
|
simprd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐾 ) = ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) ) |
28 |
21
|
reseq2d |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 0 [,] ( 𝑁 / 𝑁 ) ) ) = ( 𝐺 ↾ ( 0 [,] 1 ) ) ) |
29 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
30 |
29 3
|
cnf |
⊢ ( 𝐺 ∈ ( II Cn 𝐽 ) → 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 ) |
31 |
|
ffn |
⊢ ( 𝐺 : ( 0 [,] 1 ) ⟶ 𝑋 → 𝐺 Fn ( 0 [,] 1 ) ) |
32 |
|
fnresdm |
⊢ ( 𝐺 Fn ( 0 [,] 1 ) → ( 𝐺 ↾ ( 0 [,] 1 ) ) = 𝐺 ) |
33 |
5 30 31 32
|
4syl |
⊢ ( 𝜑 → ( 𝐺 ↾ ( 0 [,] 1 ) ) = 𝐺 ) |
34 |
27 28 33
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐾 ) = 𝐺 ) |
35 |
26 34
|
jca |
⊢ ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐾 ) = 𝐺 ) ) |