Metamath Proof Explorer


Theorem cvmliftlem11

Description: Lemma for cvmlift . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
cvmliftlem.b B=C
cvmliftlem.x X=J
cvmliftlem.f φFCCovMapJ
cvmliftlem.g φGIICnJ
cvmliftlem.p φPB
cvmliftlem.e φFP=G0
cvmliftlem.n φN
cvmliftlem.t φT:1NjJj×Sj
cvmliftlem.a φk1NGk1NkN1stTk
cvmliftlem.l L=topGenran.
cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
cvmliftlem.k K=k=1NQk
Assertion cvmliftlem11 φKIICnCFK=G

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S=kJs𝒫C|s=F-1kusvsuuv=FuC𝑡uHomeoJ𝑡k
2 cvmliftlem.b B=C
3 cvmliftlem.x X=J
4 cvmliftlem.f φFCCovMapJ
5 cvmliftlem.g φGIICnJ
6 cvmliftlem.p φPB
7 cvmliftlem.e φFP=G0
8 cvmliftlem.n φN
9 cvmliftlem.t φT:1NjJj×Sj
10 cvmliftlem.a φk1NGk1NkN1stTk
11 cvmliftlem.l L=topGenran.
12 cvmliftlem.q Q=seq0xV,mzm1NmNFιb2ndTm|xm1Nb-1GzI00P
13 cvmliftlem.k K=k=1NQk
14 biid nn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nNnn+11Nk=1nQkL𝑡0nNCnCFk=1nQk=G0nN
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cvmliftlem10 φKL𝑡0NNCnCFK=G0NN
16 15 simpld φKL𝑡0NNCnC
17 11 a1i φL=topGenran.
18 8 nncnd φN
19 8 nnne0d φN0
20 18 19 dividd φNN=1
21 20 oveq2d φ0NN=01
22 17 21 oveq12d φL𝑡0NN=topGenran.𝑡01
23 dfii2 II=topGenran.𝑡01
24 22 23 eqtr4di φL𝑡0NN=II
25 24 oveq1d φL𝑡0NNCnC=IICnC
26 16 25 eleqtrd φKIICnC
27 15 simprd φFK=G0NN
28 21 reseq2d φG0NN=G01
29 iiuni 01=II
30 29 3 cnf GIICnJG:01X
31 ffn G:01XGFn01
32 fnresdm GFn01G01=G
33 5 30 31 32 4syl φG01=G
34 27 28 33 3eqtrd φFK=G
35 26 34 jca φKIICnCFK=G