Metamath Proof Explorer


Theorem cvmliftlem11

Description: Lemma for cvmlift . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
cvmliftlem.k K = k = 1 N Q k
Assertion cvmliftlem11 φ K II Cn C F K = G

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 cvmliftlem.k K = k = 1 N Q k
14 biid n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cvmliftlem10 φ K L 𝑡 0 N N Cn C F K = G 0 N N
16 15 simpld φ K L 𝑡 0 N N Cn C
17 11 a1i φ L = topGen ran .
18 8 nncnd φ N
19 8 nnne0d φ N 0
20 18 19 dividd φ N N = 1
21 20 oveq2d φ 0 N N = 0 1
22 17 21 oveq12d φ L 𝑡 0 N N = topGen ran . 𝑡 0 1
23 dfii2 II = topGen ran . 𝑡 0 1
24 22 23 eqtr4di φ L 𝑡 0 N N = II
25 24 oveq1d φ L 𝑡 0 N N Cn C = II Cn C
26 16 25 eleqtrd φ K II Cn C
27 15 simprd φ F K = G 0 N N
28 21 reseq2d φ G 0 N N = G 0 1
29 iiuni 0 1 = II
30 29 3 cnf G II Cn J G : 0 1 X
31 ffn G : 0 1 X G Fn 0 1
32 fnresdm G Fn 0 1 G 0 1 = G
33 5 30 31 32 4syl φ G 0 1 = G
34 27 28 33 3eqtrd φ F K = G
35 26 34 jca φ K II Cn C F K = G