Metamath Proof Explorer


Theorem cvmliftlem10

Description: Lemma for cvmlift . The function K is going to be our complete lifted path, formed by unioning together all the Q functions (each of which is defined on one segment [ ( M - 1 ) / N , M / N ] of the interval). Here we prove by induction that K is a continuous function and a lift of G by applying cvmliftlem6 , cvmliftlem7 (to show it is a function and a lift), cvmliftlem8 (to show it is continuous), and cvmliftlem9 (to show that different Q functions agree on the intersection of their domains, so that the pasting lemma paste gives that K is well-defined and continuous). (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
cvmliftlem.b B = C
cvmliftlem.x X = J
cvmliftlem.f φ F C CovMap J
cvmliftlem.g φ G II Cn J
cvmliftlem.p φ P B
cvmliftlem.e φ F P = G 0
cvmliftlem.n φ N
cvmliftlem.t φ T : 1 N j J j × S j
cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
cvmliftlem.l L = topGen ran .
cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
cvmliftlem.k K = k = 1 N Q k
cvmliftlem10.1 χ n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
Assertion cvmliftlem10 φ K L 𝑡 0 N N Cn C F K = G 0 N N

Proof

Step Hyp Ref Expression
1 cvmliftlem.1 S = k J s 𝒫 C | s = F -1 k u s v s u u v = F u C 𝑡 u Homeo J 𝑡 k
2 cvmliftlem.b B = C
3 cvmliftlem.x X = J
4 cvmliftlem.f φ F C CovMap J
5 cvmliftlem.g φ G II Cn J
6 cvmliftlem.p φ P B
7 cvmliftlem.e φ F P = G 0
8 cvmliftlem.n φ N
9 cvmliftlem.t φ T : 1 N j J j × S j
10 cvmliftlem.a φ k 1 N G k 1 N k N 1 st T k
11 cvmliftlem.l L = topGen ran .
12 cvmliftlem.q Q = seq 0 x V , m z m 1 N m N F ι b 2 nd T m | x m 1 N b -1 G z I 0 0 P
13 cvmliftlem.k K = k = 1 N Q k
14 cvmliftlem10.1 χ n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
15 nnuz = 1
16 8 15 eleqtrdi φ N 1
17 eluzfz2 N 1 N 1 N
18 16 17 syl φ N 1 N
19 eleq1 y = 1 y 1 N 1 1 N
20 oveq2 y = 1 1 y = 1 1
21 1z 1
22 fzsn 1 1 1 = 1
23 21 22 ax-mp 1 1 = 1
24 20 23 eqtrdi y = 1 1 y = 1
25 24 iuneq1d y = 1 k = 1 y Q k = k 1 Q k
26 1ex 1 V
27 fveq2 k = 1 Q k = Q 1
28 26 27 iunxsn k 1 Q k = Q 1
29 25 28 eqtrdi y = 1 k = 1 y Q k = Q 1
30 oveq1 y = 1 y N = 1 N
31 30 oveq2d y = 1 0 y N = 0 1 N
32 31 oveq2d y = 1 L 𝑡 0 y N = L 𝑡 0 1 N
33 32 oveq1d y = 1 L 𝑡 0 y N Cn C = L 𝑡 0 1 N Cn C
34 29 33 eleq12d y = 1 k = 1 y Q k L 𝑡 0 y N Cn C Q 1 L 𝑡 0 1 N Cn C
35 29 coeq2d y = 1 F k = 1 y Q k = F Q 1
36 31 reseq2d y = 1 G 0 y N = G 0 1 N
37 35 36 eqeq12d y = 1 F k = 1 y Q k = G 0 y N F Q 1 = G 0 1 N
38 34 37 anbi12d y = 1 k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N Q 1 L 𝑡 0 1 N Cn C F Q 1 = G 0 1 N
39 19 38 imbi12d y = 1 y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N 1 1 N Q 1 L 𝑡 0 1 N Cn C F Q 1 = G 0 1 N
40 39 imbi2d y = 1 φ y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N φ 1 1 N Q 1 L 𝑡 0 1 N Cn C F Q 1 = G 0 1 N
41 eleq1 y = n y 1 N n 1 N
42 oveq2 y = n 1 y = 1 n
43 42 iuneq1d y = n k = 1 y Q k = k = 1 n Q k
44 oveq1 y = n y N = n N
45 44 oveq2d y = n 0 y N = 0 n N
46 45 oveq2d y = n L 𝑡 0 y N = L 𝑡 0 n N
47 46 oveq1d y = n L 𝑡 0 y N Cn C = L 𝑡 0 n N Cn C
48 43 47 eleq12d y = n k = 1 y Q k L 𝑡 0 y N Cn C k = 1 n Q k L 𝑡 0 n N Cn C
49 43 coeq2d y = n F k = 1 y Q k = F k = 1 n Q k
50 45 reseq2d y = n G 0 y N = G 0 n N
51 49 50 eqeq12d y = n F k = 1 y Q k = G 0 y N F k = 1 n Q k = G 0 n N
52 48 51 anbi12d y = n k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
53 41 52 imbi12d y = n y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N n 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
54 53 imbi2d y = n φ y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N φ n 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
55 eleq1 y = n + 1 y 1 N n + 1 1 N
56 oveq2 y = n + 1 1 y = 1 n + 1
57 56 iuneq1d y = n + 1 k = 1 y Q k = k = 1 n + 1 Q k
58 oveq1 y = n + 1 y N = n + 1 N
59 58 oveq2d y = n + 1 0 y N = 0 n + 1 N
60 59 oveq2d y = n + 1 L 𝑡 0 y N = L 𝑡 0 n + 1 N
61 60 oveq1d y = n + 1 L 𝑡 0 y N Cn C = L 𝑡 0 n + 1 N Cn C
62 57 61 eleq12d y = n + 1 k = 1 y Q k L 𝑡 0 y N Cn C k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C
63 57 coeq2d y = n + 1 F k = 1 y Q k = F k = 1 n + 1 Q k
64 59 reseq2d y = n + 1 G 0 y N = G 0 n + 1 N
65 63 64 eqeq12d y = n + 1 F k = 1 y Q k = G 0 y N F k = 1 n + 1 Q k = G 0 n + 1 N
66 62 65 anbi12d y = n + 1 k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
67 55 66 imbi12d y = n + 1 y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N n + 1 1 N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
68 67 imbi2d y = n + 1 φ y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N φ n + 1 1 N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
69 eleq1 y = N y 1 N N 1 N
70 oveq2 y = N 1 y = 1 N
71 70 iuneq1d y = N k = 1 y Q k = k = 1 N Q k
72 71 13 eqtr4di y = N k = 1 y Q k = K
73 oveq1 y = N y N = N N
74 73 oveq2d y = N 0 y N = 0 N N
75 74 oveq2d y = N L 𝑡 0 y N = L 𝑡 0 N N
76 75 oveq1d y = N L 𝑡 0 y N Cn C = L 𝑡 0 N N Cn C
77 72 76 eleq12d y = N k = 1 y Q k L 𝑡 0 y N Cn C K L 𝑡 0 N N Cn C
78 72 coeq2d y = N F k = 1 y Q k = F K
79 74 reseq2d y = N G 0 y N = G 0 N N
80 78 79 eqeq12d y = N F k = 1 y Q k = G 0 y N F K = G 0 N N
81 77 80 anbi12d y = N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N K L 𝑡 0 N N Cn C F K = G 0 N N
82 69 81 imbi12d y = N y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N N 1 N K L 𝑡 0 N N Cn C F K = G 0 N N
83 82 imbi2d y = N φ y 1 N k = 1 y Q k L 𝑡 0 y N Cn C F k = 1 y Q k = G 0 y N φ N 1 N K L 𝑡 0 N N Cn C F K = G 0 N N
84 eluzfz1 N 1 1 1 N
85 16 84 syl φ 1 1 N
86 eqid 1 1 N 1 N = 1 1 N 1 N
87 1 2 3 4 5 6 7 8 9 10 11 12 86 cvmliftlem8 φ 1 1 N Q 1 L 𝑡 1 1 N 1 N Cn C
88 85 87 mpdan φ Q 1 L 𝑡 1 1 N 1 N Cn C
89 1m1e0 1 1 = 0
90 89 oveq1i 1 1 N = 0 N
91 8 nncnd φ N
92 8 nnne0d φ N 0
93 91 92 div0d φ 0 N = 0
94 90 93 syl5eq φ 1 1 N = 0
95 94 oveq1d φ 1 1 N 1 N = 0 1 N
96 95 oveq2d φ L 𝑡 1 1 N 1 N = L 𝑡 0 1 N
97 96 oveq1d φ L 𝑡 1 1 N 1 N Cn C = L 𝑡 0 1 N Cn C
98 88 97 eleqtrd φ Q 1 L 𝑡 0 1 N Cn C
99 simpr φ 1 1 N 1 1 N
100 1 2 3 4 5 6 7 8 9 10 11 12 86 cvmliftlem7 φ 1 1 N Q 1 1 1 1 N F -1 G 1 1 N
101 1 2 3 4 5 6 7 8 9 10 11 12 86 99 100 cvmliftlem6 φ 1 1 N Q 1 : 1 1 N 1 N B F Q 1 = G 1 1 N 1 N
102 85 101 mpdan φ Q 1 : 1 1 N 1 N B F Q 1 = G 1 1 N 1 N
103 102 simprd φ F Q 1 = G 1 1 N 1 N
104 95 reseq2d φ G 1 1 N 1 N = G 0 1 N
105 103 104 eqtrd φ F Q 1 = G 0 1 N
106 98 105 jca φ Q 1 L 𝑡 0 1 N Cn C F Q 1 = G 0 1 N
107 106 a1d φ 1 1 N Q 1 L 𝑡 0 1 N Cn C F Q 1 = G 0 1 N
108 elnnuz n n 1
109 108 biimpi n n 1
110 109 adantl φ n n 1
111 peano2fzr n 1 n + 1 1 N n 1 N
112 111 ex n 1 n + 1 1 N n 1 N
113 110 112 syl φ n n + 1 1 N n 1 N
114 113 imim1d φ n n 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
115 eqid L 𝑡 0 n + 1 N = L 𝑡 0 n + 1 N
116 0re 0
117 14 simplbi χ n n + 1 1 N
118 117 adantl φ χ n n + 1 1 N
119 118 simprd φ χ n + 1 1 N
120 elfznn n + 1 1 N n + 1
121 119 120 syl φ χ n + 1
122 121 nnred φ χ n + 1
123 8 adantr φ χ N
124 122 123 nndivred φ χ n + 1 N
125 iccssre 0 n + 1 N 0 n + 1 N
126 116 124 125 sylancr φ χ 0 n + 1 N
127 117 simpld χ n
128 127 adantl φ χ n
129 128 nnred φ χ n
130 129 123 nndivred φ χ n N
131 icccld 0 n N 0 n N Clsd topGen ran .
132 116 130 131 sylancr φ χ 0 n N Clsd topGen ran .
133 11 fveq2i Clsd L = Clsd topGen ran .
134 132 133 eleqtrrdi φ χ 0 n N Clsd L
135 ssun1 0 n N 0 n N n N n + 1 N
136 116 a1i φ χ 0
137 128 nnnn0d φ χ n 0
138 137 nn0ge0d φ χ 0 n
139 123 nnred φ χ N
140 123 nngt0d φ χ 0 < N
141 divge0 n 0 n N 0 < N 0 n N
142 129 138 139 140 141 syl22anc φ χ 0 n N
143 129 ltp1d φ χ n < n + 1
144 ltdiv1 n n + 1 N 0 < N n < n + 1 n N < n + 1 N
145 129 122 139 140 144 syl112anc φ χ n < n + 1 n N < n + 1 N
146 143 145 mpbid φ χ n N < n + 1 N
147 130 124 146 ltled φ χ n N n + 1 N
148 elicc2 0 n + 1 N n N 0 n + 1 N n N 0 n N n N n + 1 N
149 116 124 148 sylancr φ χ n N 0 n + 1 N n N 0 n N n N n + 1 N
150 130 142 147 149 mpbir3and φ χ n N 0 n + 1 N
151 iccsplit 0 n + 1 N n N 0 n + 1 N 0 n + 1 N = 0 n N n N n + 1 N
152 136 124 150 151 syl3anc φ χ 0 n + 1 N = 0 n N n N n + 1 N
153 135 152 sseqtrrid φ χ 0 n N 0 n + 1 N
154 uniretop = topGen ran .
155 11 unieqi L = topGen ran .
156 154 155 eqtr4i = L
157 156 restcldi 0 n + 1 N 0 n N Clsd L 0 n N 0 n + 1 N 0 n N Clsd L 𝑡 0 n + 1 N
158 126 134 153 157 syl3anc φ χ 0 n N Clsd L 𝑡 0 n + 1 N
159 icccld n N n + 1 N n N n + 1 N Clsd topGen ran .
160 130 124 159 syl2anc φ χ n N n + 1 N Clsd topGen ran .
161 160 133 eleqtrrdi φ χ n N n + 1 N Clsd L
162 ssun2 n N n + 1 N 0 n N n N n + 1 N
163 162 152 sseqtrrid φ χ n N n + 1 N 0 n + 1 N
164 156 restcldi 0 n + 1 N n N n + 1 N Clsd L n N n + 1 N 0 n + 1 N n N n + 1 N Clsd L 𝑡 0 n + 1 N
165 126 161 163 164 syl3anc φ χ n N n + 1 N Clsd L 𝑡 0 n + 1 N
166 retop topGen ran . Top
167 11 166 eqeltri L Top
168 156 restuni L Top 0 n + 1 N 0 n + 1 N = L 𝑡 0 n + 1 N
169 167 126 168 sylancr φ χ 0 n + 1 N = L 𝑡 0 n + 1 N
170 152 169 eqtr3d φ χ 0 n N n N n + 1 N = L 𝑡 0 n + 1 N
171 14 simprbi χ k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
172 171 adantl φ χ k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N
173 172 simpld φ χ k = 1 n Q k L 𝑡 0 n N Cn C
174 eqid L 𝑡 0 n N = L 𝑡 0 n N
175 174 2 cnf k = 1 n Q k L 𝑡 0 n N Cn C k = 1 n Q k : L 𝑡 0 n N B
176 173 175 syl φ χ k = 1 n Q k : L 𝑡 0 n N B
177 iccssre 0 n N 0 n N
178 116 130 177 sylancr φ χ 0 n N
179 156 restuni L Top 0 n N 0 n N = L 𝑡 0 n N
180 167 178 179 sylancr φ χ 0 n N = L 𝑡 0 n N
181 180 feq2d φ χ k = 1 n Q k : 0 n N B k = 1 n Q k : L 𝑡 0 n N B
182 176 181 mpbird φ χ k = 1 n Q k : 0 n N B
183 eqid n + 1 - 1 N n + 1 N = n + 1 - 1 N n + 1 N
184 simpr φ n + 1 1 N n + 1 1 N
185 1 2 3 4 5 6 7 8 9 10 11 12 183 cvmliftlem7 φ n + 1 1 N Q n + 1 - 1 n + 1 - 1 N F -1 G n + 1 - 1 N
186 1 2 3 4 5 6 7 8 9 10 11 12 183 184 185 cvmliftlem6 φ n + 1 1 N Q n + 1 : n + 1 - 1 N n + 1 N B F Q n + 1 = G n + 1 - 1 N n + 1 N
187 119 186 syldan φ χ Q n + 1 : n + 1 - 1 N n + 1 N B F Q n + 1 = G n + 1 - 1 N n + 1 N
188 187 simpld φ χ Q n + 1 : n + 1 - 1 N n + 1 N B
189 128 nncnd φ χ n
190 ax-1cn 1
191 pncan n 1 n + 1 - 1 = n
192 189 190 191 sylancl φ χ n + 1 - 1 = n
193 192 oveq1d φ χ n + 1 - 1 N = n N
194 193 oveq1d φ χ n + 1 - 1 N n + 1 N = n N n + 1 N
195 194 feq2d φ χ Q n + 1 : n + 1 - 1 N n + 1 N B Q n + 1 : n N n + 1 N B
196 188 195 mpbid φ χ Q n + 1 : n N n + 1 N B
197 176 ffund φ χ Fun k = 1 n Q k
198 128 109 syl φ χ n 1
199 eluzfz2 n 1 n 1 n
200 198 199 syl φ χ n 1 n
201 fveq2 k = n Q k = Q n
202 201 ssiun2s n 1 n Q n k = 1 n Q k
203 200 202 syl φ χ Q n k = 1 n Q k
204 peano2rem n n 1
205 129 204 syl φ χ n 1
206 205 123 nndivred φ χ n 1 N
207 206 rexrd φ χ n 1 N *
208 130 rexrd φ χ n N *
209 129 ltm1d φ χ n 1 < n
210 ltdiv1 n 1 n N 0 < N n 1 < n n 1 N < n N
211 205 129 139 140 210 syl112anc φ χ n 1 < n n 1 N < n N
212 209 211 mpbid φ χ n 1 N < n N
213 206 130 212 ltled φ χ n 1 N n N
214 ubicc2 n 1 N * n N * n 1 N n N n N n 1 N n N
215 207 208 213 214 syl3anc φ χ n N n 1 N n N
216 198 119 111 syl2anc φ χ n 1 N
217 eqid n 1 N n N = n 1 N n N
218 simpr φ n 1 N n 1 N
219 1 2 3 4 5 6 7 8 9 10 11 12 217 cvmliftlem7 φ n 1 N Q n 1 n 1 N F -1 G n 1 N
220 1 2 3 4 5 6 7 8 9 10 11 12 217 218 219 cvmliftlem6 φ n 1 N Q n : n 1 N n N B F Q n = G n 1 N n N
221 216 220 syldan φ χ Q n : n 1 N n N B F Q n = G n 1 N n N
222 221 simpld φ χ Q n : n 1 N n N B
223 222 fdmd φ χ dom Q n = n 1 N n N
224 215 223 eleqtrrd φ χ n N dom Q n
225 funssfv Fun k = 1 n Q k Q n k = 1 n Q k n N dom Q n k = 1 n Q k n N = Q n n N
226 197 203 224 225 syl3anc φ χ k = 1 n Q k n N = Q n n N
227 192 fveq2d φ χ Q n + 1 - 1 = Q n
228 227 193 fveq12d φ χ Q n + 1 - 1 n + 1 - 1 N = Q n n N
229 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem9 φ n + 1 1 N Q n + 1 n + 1 - 1 N = Q n + 1 - 1 n + 1 - 1 N
230 119 229 syldan φ χ Q n + 1 n + 1 - 1 N = Q n + 1 - 1 n + 1 - 1 N
231 193 fveq2d φ χ Q n + 1 n + 1 - 1 N = Q n + 1 n N
232 230 231 eqtr3d φ χ Q n + 1 - 1 n + 1 - 1 N = Q n + 1 n N
233 226 228 232 3eqtr2d φ χ k = 1 n Q k n N = Q n + 1 n N
234 233 opeq2d φ χ n N k = 1 n Q k n N = n N Q n + 1 n N
235 234 sneqd φ χ n N k = 1 n Q k n N = n N Q n + 1 n N
236 182 ffnd φ χ k = 1 n Q k Fn 0 n N
237 0xr 0 *
238 237 a1i φ χ 0 *
239 ubicc2 0 * n N * 0 n N n N 0 n N
240 238 208 142 239 syl3anc φ χ n N 0 n N
241 fnressn k = 1 n Q k Fn 0 n N n N 0 n N k = 1 n Q k n N = n N k = 1 n Q k n N
242 236 240 241 syl2anc φ χ k = 1 n Q k n N = n N k = 1 n Q k n N
243 196 ffnd φ χ Q n + 1 Fn n N n + 1 N
244 124 rexrd φ χ n + 1 N *
245 lbicc2 n N * n + 1 N * n N n + 1 N n N n N n + 1 N
246 208 244 147 245 syl3anc φ χ n N n N n + 1 N
247 fnressn Q n + 1 Fn n N n + 1 N n N n N n + 1 N Q n + 1 n N = n N Q n + 1 n N
248 243 246 247 syl2anc φ χ Q n + 1 n N = n N Q n + 1 n N
249 235 242 248 3eqtr4d φ χ k = 1 n Q k n N = Q n + 1 n N
250 df-icc . = x * , y * z * | x z z y
251 xrmaxle 0 * n N * z * if 0 n N n N 0 z 0 z n N z
252 xrlemin z * n N * n + 1 N * z if n N n + 1 N n N n + 1 N z n N z n + 1 N
253 250 251 252 ixxin 0 * n N * n N * n + 1 N * 0 n N n N n + 1 N = if 0 n N n N 0 if n N n + 1 N n N n + 1 N
254 238 208 208 244 253 syl22anc φ χ 0 n N n N n + 1 N = if 0 n N n N 0 if n N n + 1 N n N n + 1 N
255 142 iftrued φ χ if 0 n N n N 0 = n N
256 147 iftrued φ χ if n N n + 1 N n N n + 1 N = n N
257 255 256 oveq12d φ χ if 0 n N n N 0 if n N n + 1 N n N n + 1 N = n N n N
258 iccid n N * n N n N = n N
259 208 258 syl φ χ n N n N = n N
260 254 257 259 3eqtrd φ χ 0 n N n N n + 1 N = n N
261 260 reseq2d φ χ k = 1 n Q k 0 n N n N n + 1 N = k = 1 n Q k n N
262 260 reseq2d φ χ Q n + 1 0 n N n N n + 1 N = Q n + 1 n N
263 249 261 262 3eqtr4d φ χ k = 1 n Q k 0 n N n N n + 1 N = Q n + 1 0 n N n N n + 1 N
264 fresaun k = 1 n Q k : 0 n N B Q n + 1 : n N n + 1 N B k = 1 n Q k 0 n N n N n + 1 N = Q n + 1 0 n N n N n + 1 N k = 1 n Q k Q n + 1 : 0 n N n N n + 1 N B
265 182 196 263 264 syl3anc φ χ k = 1 n Q k Q n + 1 : 0 n N n N n + 1 N B
266 fzsuc n 1 1 n + 1 = 1 n n + 1
267 198 266 syl φ χ 1 n + 1 = 1 n n + 1
268 267 iuneq1d φ χ k = 1 n + 1 Q k = k 1 n n + 1 Q k
269 iunxun k 1 n n + 1 Q k = k = 1 n Q k k n + 1 Q k
270 ovex n + 1 V
271 fveq2 k = n + 1 Q k = Q n + 1
272 270 271 iunxsn k n + 1 Q k = Q n + 1
273 272 uneq2i k = 1 n Q k k n + 1 Q k = k = 1 n Q k Q n + 1
274 269 273 eqtri k 1 n n + 1 Q k = k = 1 n Q k Q n + 1
275 268 274 eqtr2di φ χ k = 1 n Q k Q n + 1 = k = 1 n + 1 Q k
276 275 feq1d φ χ k = 1 n Q k Q n + 1 : 0 n N n N n + 1 N B k = 1 n + 1 Q k : 0 n N n N n + 1 N B
277 265 276 mpbid φ χ k = 1 n + 1 Q k : 0 n N n N n + 1 N B
278 170 feq2d φ χ k = 1 n + 1 Q k : 0 n N n N n + 1 N B k = 1 n + 1 Q k : L 𝑡 0 n + 1 N B
279 277 278 mpbid φ χ k = 1 n + 1 Q k : L 𝑡 0 n + 1 N B
280 275 reseq1d φ χ k = 1 n Q k Q n + 1 0 n N = k = 1 n + 1 Q k 0 n N
281 fresaunres1 k = 1 n Q k : 0 n N B Q n + 1 : n N n + 1 N B k = 1 n Q k 0 n N n N n + 1 N = Q n + 1 0 n N n N n + 1 N k = 1 n Q k Q n + 1 0 n N = k = 1 n Q k
282 182 196 263 281 syl3anc φ χ k = 1 n Q k Q n + 1 0 n N = k = 1 n Q k
283 280 282 eqtr3d φ χ k = 1 n + 1 Q k 0 n N = k = 1 n Q k
284 167 a1i φ χ L Top
285 ovex 0 n + 1 N V
286 285 a1i φ χ 0 n + 1 N V
287 restabs L Top 0 n N 0 n + 1 N 0 n + 1 N V L 𝑡 0 n + 1 N 𝑡 0 n N = L 𝑡 0 n N
288 284 153 286 287 syl3anc φ χ L 𝑡 0 n + 1 N 𝑡 0 n N = L 𝑡 0 n N
289 288 oveq1d φ χ L 𝑡 0 n + 1 N 𝑡 0 n N Cn C = L 𝑡 0 n N Cn C
290 173 283 289 3eltr4d φ χ k = 1 n + 1 Q k 0 n N L 𝑡 0 n + 1 N 𝑡 0 n N Cn C
291 1 2 3 4 5 6 7 8 9 10 11 12 183 cvmliftlem8 φ n + 1 1 N Q n + 1 L 𝑡 n + 1 - 1 N n + 1 N Cn C
292 119 291 syldan φ χ Q n + 1 L 𝑡 n + 1 - 1 N n + 1 N Cn C
293 194 oveq2d φ χ L 𝑡 n + 1 - 1 N n + 1 N = L 𝑡 n N n + 1 N
294 293 oveq1d φ χ L 𝑡 n + 1 - 1 N n + 1 N Cn C = L 𝑡 n N n + 1 N Cn C
295 292 294 eleqtrd φ χ Q n + 1 L 𝑡 n N n + 1 N Cn C
296 275 reseq1d φ χ k = 1 n Q k Q n + 1 n N n + 1 N = k = 1 n + 1 Q k n N n + 1 N
297 fresaunres2 k = 1 n Q k : 0 n N B Q n + 1 : n N n + 1 N B k = 1 n Q k 0 n N n N n + 1 N = Q n + 1 0 n N n N n + 1 N k = 1 n Q k Q n + 1 n N n + 1 N = Q n + 1
298 182 196 263 297 syl3anc φ χ k = 1 n Q k Q n + 1 n N n + 1 N = Q n + 1
299 296 298 eqtr3d φ χ k = 1 n + 1 Q k n N n + 1 N = Q n + 1
300 restabs L Top n N n + 1 N 0 n + 1 N 0 n + 1 N V L 𝑡 0 n + 1 N 𝑡 n N n + 1 N = L 𝑡 n N n + 1 N
301 284 163 286 300 syl3anc φ χ L 𝑡 0 n + 1 N 𝑡 n N n + 1 N = L 𝑡 n N n + 1 N
302 301 oveq1d φ χ L 𝑡 0 n + 1 N 𝑡 n N n + 1 N Cn C = L 𝑡 n N n + 1 N Cn C
303 295 299 302 3eltr4d φ χ k = 1 n + 1 Q k n N n + 1 N L 𝑡 0 n + 1 N 𝑡 n N n + 1 N Cn C
304 115 2 158 165 170 279 290 303 paste φ χ k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C
305 152 reseq2d φ χ G 0 n + 1 N = G 0 n N n N n + 1 N
306 172 simprd φ χ F k = 1 n Q k = G 0 n N
307 187 simprd φ χ F Q n + 1 = G n + 1 - 1 N n + 1 N
308 194 reseq2d φ χ G n + 1 - 1 N n + 1 N = G n N n + 1 N
309 307 308 eqtrd φ χ F Q n + 1 = G n N n + 1 N
310 306 309 uneq12d φ χ F k = 1 n Q k F Q n + 1 = G 0 n N G n N n + 1 N
311 coundi F k = 1 n Q k Q n + 1 = F k = 1 n Q k F Q n + 1
312 resundi G 0 n N n N n + 1 N = G 0 n N G n N n + 1 N
313 310 311 312 3eqtr4g φ χ F k = 1 n Q k Q n + 1 = G 0 n N n N n + 1 N
314 275 coeq2d φ χ F k = 1 n Q k Q n + 1 = F k = 1 n + 1 Q k
315 305 313 314 3eqtr2rd φ χ F k = 1 n + 1 Q k = G 0 n + 1 N
316 304 315 jca φ χ k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
317 14 316 sylan2br φ n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
318 317 expr φ n n + 1 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
319 114 318 animpimp2impd n φ n 1 N k = 1 n Q k L 𝑡 0 n N Cn C F k = 1 n Q k = G 0 n N φ n + 1 1 N k = 1 n + 1 Q k L 𝑡 0 n + 1 N Cn C F k = 1 n + 1 Q k = G 0 n + 1 N
320 40 54 68 83 107 319 nnind N φ N 1 N K L 𝑡 0 N N Cn C F K = G 0 N N
321 8 320 mpcom φ N 1 N K L 𝑡 0 N N Cn C F K = G 0 N N
322 18 321 mpd φ K L 𝑡 0 N N Cn C F K = G 0 N N