| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem.k | ⊢ 𝐾  =  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) | 
						
							| 14 |  | cvmliftlem10.1 | ⊢ ( 𝜒  ↔  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) | 
						
							| 15 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 16 | 8 15 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 17 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 18 | 16 17 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 19 |  | eleq1 | ⊢ ( 𝑦  =  1  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  1  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑦  =  1  →  ( 1 ... 𝑦 )  =  ( 1 ... 1 ) ) | 
						
							| 21 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 22 |  | fzsn | ⊢ ( 1  ∈  ℤ  →  ( 1 ... 1 )  =  { 1 } ) | 
						
							| 23 | 21 22 | ax-mp | ⊢ ( 1 ... 1 )  =  { 1 } | 
						
							| 24 | 20 23 | eqtrdi | ⊢ ( 𝑦  =  1  →  ( 1 ... 𝑦 )  =  { 1 } ) | 
						
							| 25 | 24 | iuneq1d | ⊢ ( 𝑦  =  1  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  ∪  𝑘  ∈  { 1 } ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 26 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 27 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 1 ) ) | 
						
							| 28 | 26 27 | iunxsn | ⊢ ∪  𝑘  ∈  { 1 } ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 1 ) | 
						
							| 29 | 25 28 | eqtrdi | ⊢ ( 𝑦  =  1  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 1 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝑦  =  1  →  ( 𝑦  /  𝑁 )  =  ( 1  /  𝑁 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( 𝑦  =  1  →  ( 0 [,] ( 𝑦  /  𝑁 ) )  =  ( 0 [,] ( 1  /  𝑁 ) ) ) | 
						
							| 32 | 31 | oveq2d | ⊢ ( 𝑦  =  1  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑦  =  1  →  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 34 | 29 33 | eleq12d | ⊢ ( 𝑦  =  1  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ↔  ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) ) | 
						
							| 35 | 29 | coeq2d | ⊢ ( 𝑦  =  1  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) ) ) | 
						
							| 36 | 31 | reseq2d | ⊢ ( 𝑦  =  1  →  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 37 | 35 36 | eqeq12d | ⊢ ( 𝑦  =  1  →  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  ↔  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 38 | 34 37 | anbi12d | ⊢ ( 𝑦  =  1  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) )  ↔  ( ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) ) | 
						
							| 39 | 19 38 | imbi12d | ⊢ ( 𝑦  =  1  →  ( ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) )  ↔  ( 1  ∈  ( 1 ... 𝑁 )  →  ( ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 40 | 39 | imbi2d | ⊢ ( 𝑦  =  1  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) ) )  ↔  ( 𝜑  →  ( 1  ∈  ( 1 ... 𝑁 )  →  ( ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) ) ) ) | 
						
							| 41 |  | eleq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  𝑛  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 42 |  | oveq2 | ⊢ ( 𝑦  =  𝑛  →  ( 1 ... 𝑦 )  =  ( 1 ... 𝑛 ) ) | 
						
							| 43 | 42 | iuneq1d | ⊢ ( 𝑦  =  𝑛  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 44 |  | oveq1 | ⊢ ( 𝑦  =  𝑛  →  ( 𝑦  /  𝑁 )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 45 | 44 | oveq2d | ⊢ ( 𝑦  =  𝑛  →  ( 0 [,] ( 𝑦  /  𝑁 ) )  =  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑦  =  𝑛  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 48 | 43 47 | eleq12d | ⊢ ( 𝑦  =  𝑛  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ↔  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 ) ) ) | 
						
							| 49 | 43 | coeq2d | ⊢ ( 𝑦  =  𝑛  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 50 | 45 | reseq2d | ⊢ ( 𝑦  =  𝑛  →  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 51 | 49 50 | eqeq12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  ↔  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) | 
						
							| 52 | 48 51 | anbi12d | ⊢ ( 𝑦  =  𝑛  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) )  ↔  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) | 
						
							| 53 | 41 52 | imbi12d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) )  ↔  ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 54 | 53 | imbi2d | ⊢ ( 𝑦  =  𝑛  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) ) ) | 
						
							| 55 |  | eleq1 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 56 |  | oveq2 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 1 ... 𝑦 )  =  ( 1 ... ( 𝑛  +  1 ) ) ) | 
						
							| 57 | 56 | iuneq1d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 58 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝑦  /  𝑁 )  =  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 0 [,] ( 𝑦  /  𝑁 ) )  =  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 62 | 57 61 | eleq12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ↔  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) ) | 
						
							| 63 | 57 | coeq2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 64 | 59 | reseq2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 65 | 63 64 | eqeq12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  ↔  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 66 | 62 65 | anbi12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) )  ↔  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) ) | 
						
							| 67 | 55 66 | imbi12d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) )  ↔  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 68 | 67 | imbi2d | ⊢ ( 𝑦  =  ( 𝑛  +  1 )  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) ) )  ↔  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) ) ) ) | 
						
							| 69 |  | eleq1 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  ↔  𝑁  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 70 |  | oveq2 | ⊢ ( 𝑦  =  𝑁  →  ( 1 ... 𝑦 )  =  ( 1 ... 𝑁 ) ) | 
						
							| 71 | 70 | iuneq1d | ⊢ ( 𝑦  =  𝑁  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 72 | 71 13 | eqtr4di | ⊢ ( 𝑦  =  𝑁  →  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  =  𝐾 ) | 
						
							| 73 |  | oveq1 | ⊢ ( 𝑦  =  𝑁  →  ( 𝑦  /  𝑁 )  =  ( 𝑁  /  𝑁 ) ) | 
						
							| 74 | 73 | oveq2d | ⊢ ( 𝑦  =  𝑁  →  ( 0 [,] ( 𝑦  /  𝑁 ) )  =  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( 𝑦  =  𝑁  →  ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) | 
						
							| 76 | 75 | oveq1d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 77 | 72 76 | eleq12d | ⊢ ( 𝑦  =  𝑁  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ↔  𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 ) ) ) | 
						
							| 78 | 72 | coeq2d | ⊢ ( 𝑦  =  𝑁  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐹  ∘  𝐾 ) ) | 
						
							| 79 | 74 | reseq2d | ⊢ ( 𝑦  =  𝑁  →  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) | 
						
							| 80 | 78 79 | eqeq12d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  ↔  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) | 
						
							| 81 | 77 80 | anbi12d | ⊢ ( 𝑦  =  𝑁  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) )  ↔  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) ) | 
						
							| 82 | 69 81 | imbi12d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) )  ↔  ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 83 | 82 | imbi2d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝜑  →  ( 𝑦  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑦  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑦 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑦  /  𝑁 ) ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) ) ) ) | 
						
							| 84 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 85 | 16 84 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 86 |  | eqid | ⊢ ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) )  =  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) | 
						
							| 87 | 1 2 3 4 5 6 7 8 9 10 11 12 86 | cvmliftlem8 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 88 | 85 87 | mpdan | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 89 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 90 | 89 | oveq1i | ⊢ ( ( 1  −  1 )  /  𝑁 )  =  ( 0  /  𝑁 ) | 
						
							| 91 | 8 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 92 | 8 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 93 | 91 92 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝑁 )  =  0 ) | 
						
							| 94 | 90 93 | eqtrid | ⊢ ( 𝜑  →  ( ( 1  −  1 )  /  𝑁 )  =  0 ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) )  =  ( 0 [,] ( 1  /  𝑁 ) ) ) | 
						
							| 96 | 95 | oveq2d | ⊢ ( 𝜑  →  ( 𝐿  ↾t  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 97 | 96 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐿  ↾t  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 98 | 88 97 | eleqtrd | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 99 |  | simpr | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 100 | 1 2 3 4 5 6 7 8 9 10 11 12 86 | cvmliftlem7 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 1  −  1 ) ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 1  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 101 | 1 2 3 4 5 6 7 8 9 10 11 12 86 99 100 | cvmliftlem6 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 1 ) : ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 102 | 85 101 | mpdan | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 ) : ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 103 | 102 | simprd | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 104 | 95 | reseq2d | ⊢ ( 𝜑  →  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 105 | 103 104 | eqtrd | ⊢ ( 𝜑  →  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) | 
						
							| 106 | 98 105 | jca | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 107 | 106 | a1d | ⊢ ( 𝜑  →  ( 1  ∈  ( 1 ... 𝑁 )  →  ( ( 𝑄 ‘ 1 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 1  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 1  /  𝑁 ) ) ) ) ) ) | 
						
							| 108 |  | elnnuz | ⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 109 | 108 | biimpi | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 111 |  | peano2fzr | ⊢ ( ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 112 | 111 | ex | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 113 | 110 112 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 114 | 113 | imim1d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) )  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 115 |  | eqid | ⊢ ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 116 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 117 | 14 | simplbi | ⊢ ( 𝜒  →  ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 118 | 117 | adantl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) ) | 
						
							| 119 | 118 | simprd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 120 |  | elfznn | ⊢ ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 121 | 119 120 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  +  1 )  ∈  ℕ ) | 
						
							| 122 | 121 | nnred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  +  1 )  ∈  ℝ ) | 
						
							| 123 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑁  ∈  ℕ ) | 
						
							| 124 | 122 123 | nndivred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 125 |  | iccssre | ⊢ ( ( 0  ∈  ℝ  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ℝ ) | 
						
							| 126 | 116 124 125 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ℝ ) | 
						
							| 127 | 117 | simpld | ⊢ ( 𝜒  →  𝑛  ∈  ℕ ) | 
						
							| 128 | 127 | adantl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ℕ ) | 
						
							| 129 | 128 | nnred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ℝ ) | 
						
							| 130 | 129 123 | nndivred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ℝ ) | 
						
							| 131 |  | icccld | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 132 | 116 130 131 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 133 | 11 | fveq2i | ⊢ ( Clsd ‘ 𝐿 )  =  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) | 
						
							| 134 | 132 133 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ 𝐿 ) ) | 
						
							| 135 |  | ssun1 | ⊢ ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 136 | 116 | a1i | ⊢ ( ( 𝜑  ∧  𝜒 )  →  0  ∈  ℝ ) | 
						
							| 137 | 128 | nnnn0d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ℕ0 ) | 
						
							| 138 | 137 | nn0ge0d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  0  ≤  𝑛 ) | 
						
							| 139 | 123 | nnred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑁  ∈  ℝ ) | 
						
							| 140 | 123 | nngt0d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  0  <  𝑁 ) | 
						
							| 141 |  | divge0 | ⊢ ( ( ( 𝑛  ∈  ℝ  ∧  0  ≤  𝑛 )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  0  ≤  ( 𝑛  /  𝑁 ) ) | 
						
							| 142 | 129 138 139 140 141 | syl22anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  0  ≤  ( 𝑛  /  𝑁 ) ) | 
						
							| 143 | 129 | ltp1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  <  ( 𝑛  +  1 ) ) | 
						
							| 144 |  | ltdiv1 | ⊢ ( ( 𝑛  ∈  ℝ  ∧  ( 𝑛  +  1 )  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 145 | 129 122 139 140 144 | syl112anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  <  ( 𝑛  +  1 )  ↔  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 146 | 143 145 | mpbid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  <  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 147 | 130 124 146 | ltled | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 148 |  | elicc2 | ⊢ ( ( 0  ∈  ℝ  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ )  →  ( ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ↔  ( ( 𝑛  /  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑛  /  𝑁 )  ∧  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 149 | 116 124 148 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ↔  ( ( 𝑛  /  𝑁 )  ∈  ℝ  ∧  0  ≤  ( 𝑛  /  𝑁 )  ∧  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 150 | 130 142 147 149 | mpbir3and | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 151 |  | iccsplit | ⊢ ( ( 0  ∈  ℝ  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ  ∧  ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 152 | 136 124 150 151 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 153 | 135 152 | sseqtrrid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 154 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 155 | 11 | unieqi | ⊢ ∪  𝐿  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 156 | 154 155 | eqtr4i | ⊢ ℝ  =  ∪  𝐿 | 
						
							| 157 | 156 | restcldi | ⊢ ( ( ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ℝ  ∧  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ 𝐿 )  ∧  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 158 | 126 134 153 157 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∈  ( Clsd ‘ ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 159 |  | icccld | ⊢ ( ( ( 𝑛  /  𝑁 )  ∈  ℝ  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 160 | 130 124 159 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ ( topGen ‘ ran  (,) ) ) ) | 
						
							| 161 | 160 133 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ 𝐿 ) ) | 
						
							| 162 |  | ssun2 | ⊢ ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 163 | 162 152 | sseqtrrid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 164 | 156 | restcldi | ⊢ ( ( ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ℝ  ∧  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ 𝐿 )  ∧  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 165 | 126 161 163 164 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  ( Clsd ‘ ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 166 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 167 | 11 166 | eqeltri | ⊢ 𝐿  ∈  Top | 
						
							| 168 | 156 | restuni | ⊢ ( ( 𝐿  ∈  Top  ∧  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ℝ )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 169 | 167 126 168 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 170 | 152 169 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 171 | 14 | simprbi | ⊢ ( 𝜒  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) | 
						
							| 172 | 171 | adantl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) | 
						
							| 173 | 172 | simpld | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 174 |  | eqid | ⊢ ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 175 | 174 2 | cnf | ⊢ ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  →  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 176 | 173 175 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 177 |  | iccssre | ⊢ ( ( 0  ∈  ℝ  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ℝ ) | 
						
							| 178 | 116 130 177 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ℝ ) | 
						
							| 179 | 156 | restuni | ⊢ ( ( 𝐿  ∈  Top  ∧  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ℝ )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 180 | 167 178 179 | sylancr | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( 𝑛  /  𝑁 ) )  =  ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 181 | 180 | feq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ( 0 [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ↔  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ∪  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ⟶ 𝐵 ) ) | 
						
							| 182 | 176 181 | mpbird | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ( 0 [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 183 |  | eqid | ⊢ ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) | 
						
							| 184 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 185 | 1 2 3 4 5 6 7 8 9 10 11 12 183 | cvmliftlem7 | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 186 | 1 2 3 4 5 6 7 8 9 10 11 12 183 184 185 | cvmliftlem6 | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 187 | 119 186 | syldan | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 188 | 187 | simpld | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 189 | 128 | nncnd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ℂ ) | 
						
							| 190 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 191 |  | pncan | ⊢ ( ( 𝑛  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 192 | 189 190 191 | sylancl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  +  1 )  −  1 )  =  𝑛 ) | 
						
							| 193 | 192 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 194 | 193 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 195 | 194 | feq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ↔  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) ) | 
						
							| 196 | 188 195 | mpbid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 197 | 176 | ffund | ⊢ ( ( 𝜑  ∧  𝜒 )  →  Fun  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 198 | 128 109 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 199 |  | eluzfz2 | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  𝑛  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 200 | 198 199 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 201 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 𝑛 ) ) | 
						
							| 202 | 201 | ssiun2s | ⊢ ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 𝑄 ‘ 𝑛 )  ⊆  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 203 | 200 202 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ 𝑛 )  ⊆  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 204 |  | peano2rem | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 205 | 129 204 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  −  1 )  ∈  ℝ ) | 
						
							| 206 | 205 123 | nndivred | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  −  1 )  /  𝑁 )  ∈  ℝ ) | 
						
							| 207 | 206 | rexrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  −  1 )  /  𝑁 )  ∈  ℝ* ) | 
						
							| 208 | 130 | rexrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ℝ* ) | 
						
							| 209 | 129 | ltm1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  −  1 )  <  𝑛 ) | 
						
							| 210 |  | ltdiv1 | ⊢ ( ( ( 𝑛  −  1 )  ∈  ℝ  ∧  𝑛  ∈  ℝ  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  ( ( 𝑛  −  1 )  <  𝑛  ↔  ( ( 𝑛  −  1 )  /  𝑁 )  <  ( 𝑛  /  𝑁 ) ) ) | 
						
							| 211 | 205 129 139 140 210 | syl112anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  −  1 )  <  𝑛  ↔  ( ( 𝑛  −  1 )  /  𝑁 )  <  ( 𝑛  /  𝑁 ) ) ) | 
						
							| 212 | 209 211 | mpbid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  −  1 )  /  𝑁 )  <  ( 𝑛  /  𝑁 ) ) | 
						
							| 213 | 206 130 212 | ltled | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  −  1 )  /  𝑁 )  ≤  ( 𝑛  /  𝑁 ) ) | 
						
							| 214 |  | ubicc2 | ⊢ ( ( ( ( 𝑛  −  1 )  /  𝑁 )  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑛  −  1 )  /  𝑁 )  ≤  ( 𝑛  /  𝑁 ) )  →  ( 𝑛  /  𝑁 )  ∈  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 215 | 207 208 213 214 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 216 | 198 119 111 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 217 |  | eqid | ⊢ ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) )  =  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) | 
						
							| 218 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  𝑛  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 219 | 1 2 3 4 5 6 7 8 9 10 11 12 217 | cvmliftlem7 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑛  −  1 ) ) ‘ ( ( 𝑛  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 𝑛  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 220 | 1 2 3 4 5 6 7 8 9 10 11 12 217 218 219 | cvmliftlem6 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 𝑛 ) : ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 𝑛 ) )  =  ( 𝐺  ↾  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) ) ) | 
						
							| 221 | 216 220 | syldan | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ 𝑛 ) : ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 𝑛 ) )  =  ( 𝐺  ↾  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) ) ) | 
						
							| 222 | 221 | simpld | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ 𝑛 ) : ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 223 | 222 | fdmd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  dom  ( 𝑄 ‘ 𝑛 )  =  ( ( ( 𝑛  −  1 )  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 224 | 215 223 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  dom  ( 𝑄 ‘ 𝑛 ) ) | 
						
							| 225 |  | funssfv | ⊢ ( ( Fun  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∧  ( 𝑄 ‘ 𝑛 )  ⊆  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∧  ( 𝑛  /  𝑁 )  ∈  dom  ( 𝑄 ‘ 𝑛 ) )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 226 | 197 203 224 225 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 227 | 192 | fveq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) )  =  ( 𝑄 ‘ 𝑛 ) ) | 
						
							| 228 | 227 193 | fveq12d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ 𝑛 ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 229 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem9 | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) ) | 
						
							| 230 | 119 229 | syldan | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) ) ) | 
						
							| 231 | 193 | fveq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 232 | 230 231 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( ( 𝑛  +  1 )  −  1 ) ) ‘ ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 233 | 226 228 232 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) ) | 
						
							| 234 | 233 | opeq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  〈 ( 𝑛  /  𝑁 ) ,  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) ) 〉  =  〈 ( 𝑛  /  𝑁 ) ,  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) 〉 ) | 
						
							| 235 | 234 | sneqd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  { 〈 ( 𝑛  /  𝑁 ) ,  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) ) 〉 }  =  { 〈 ( 𝑛  /  𝑁 ) ,  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) 〉 } ) | 
						
							| 236 | 182 | ffnd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  Fn  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 237 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 238 | 237 | a1i | ⊢ ( ( 𝜑  ∧  𝜒 )  →  0  ∈  ℝ* ) | 
						
							| 239 |  | ubicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  0  ≤  ( 𝑛  /  𝑁 ) )  →  ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 240 | 238 208 142 239 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 241 |  | fnressn | ⊢ ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  Fn  ( 0 [,] ( 𝑛  /  𝑁 ) )  ∧  ( 𝑛  /  𝑁 )  ∈  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  { ( 𝑛  /  𝑁 ) } )  =  { 〈 ( 𝑛  /  𝑁 ) ,  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) ) 〉 } ) | 
						
							| 242 | 236 240 241 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  { ( 𝑛  /  𝑁 ) } )  =  { 〈 ( 𝑛  /  𝑁 ) ,  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ‘ ( 𝑛  /  𝑁 ) ) 〉 } ) | 
						
							| 243 | 196 | ffnd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) )  Fn  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 244 | 124 | rexrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ* ) | 
						
							| 245 |  | lbicc2 | ⊢ ( ( ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) )  →  ( 𝑛  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 246 | 208 244 147 245 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑛  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) | 
						
							| 247 |  | fnressn | ⊢ ( ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  Fn  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∧  ( 𝑛  /  𝑁 )  ∈  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  { ( 𝑛  /  𝑁 ) } )  =  { 〈 ( 𝑛  /  𝑁 ) ,  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) 〉 } ) | 
						
							| 248 | 243 246 247 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  { ( 𝑛  /  𝑁 ) } )  =  { 〈 ( 𝑛  /  𝑁 ) ,  ( ( 𝑄 ‘ ( 𝑛  +  1 ) ) ‘ ( 𝑛  /  𝑁 ) ) 〉 } ) | 
						
							| 249 | 235 242 248 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  { ( 𝑛  /  𝑁 ) } )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  { ( 𝑛  /  𝑁 ) } ) ) | 
						
							| 250 |  | df-icc | ⊢ [,]  =  ( 𝑥  ∈  ℝ* ,  𝑦  ∈  ℝ*  ↦  { 𝑧  ∈  ℝ*  ∣  ( 𝑥  ≤  𝑧  ∧  𝑧  ≤  𝑦 ) } ) | 
						
							| 251 |  | xrmaxle | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  𝑧  ∈  ℝ* )  →  ( if ( 0  ≤  ( 𝑛  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  0 )  ≤  𝑧  ↔  ( 0  ≤  𝑧  ∧  ( 𝑛  /  𝑁 )  ≤  𝑧 ) ) ) | 
						
							| 252 |  | xrlemin | ⊢ ( ( 𝑧  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ* )  →  ( 𝑧  ≤  if ( ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  ( ( 𝑛  +  1 )  /  𝑁 ) )  ↔  ( 𝑧  ≤  ( 𝑛  /  𝑁 )  ∧  𝑧  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 253 | 250 251 252 | ixxin | ⊢ ( ( ( 0  ∈  ℝ*  ∧  ( 𝑛  /  𝑁 )  ∈  ℝ* )  ∧  ( ( 𝑛  /  𝑁 )  ∈  ℝ*  ∧  ( ( 𝑛  +  1 )  /  𝑁 )  ∈  ℝ* ) )  →  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( if ( 0  ≤  ( 𝑛  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  0 ) [,] if ( ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 254 | 238 208 208 244 253 | syl22anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( if ( 0  ≤  ( 𝑛  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  0 ) [,] if ( ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 255 | 142 | iftrued | ⊢ ( ( 𝜑  ∧  𝜒 )  →  if ( 0  ≤  ( 𝑛  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  0 )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 256 | 147 | iftrued | ⊢ ( ( 𝜑  ∧  𝜒 )  →  if ( ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  ( ( 𝑛  +  1 )  /  𝑁 ) )  =  ( 𝑛  /  𝑁 ) ) | 
						
							| 257 | 255 256 | oveq12d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( if ( 0  ≤  ( 𝑛  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  0 ) [,] if ( ( 𝑛  /  𝑁 )  ≤  ( ( 𝑛  +  1 )  /  𝑁 ) ,  ( 𝑛  /  𝑁 ) ,  ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( ( 𝑛  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) ) ) | 
						
							| 258 |  | iccid | ⊢ ( ( 𝑛  /  𝑁 )  ∈  ℝ*  →  ( ( 𝑛  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) )  =  { ( 𝑛  /  𝑁 ) } ) | 
						
							| 259 | 208 258 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑛  /  𝑁 ) [,] ( 𝑛  /  𝑁 ) )  =  { ( 𝑛  /  𝑁 ) } ) | 
						
							| 260 | 254 257 259 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  { ( 𝑛  /  𝑁 ) } ) | 
						
							| 261 | 260 | reseq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  { ( 𝑛  /  𝑁 ) } ) ) | 
						
							| 262 | 260 | reseq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  { ( 𝑛  /  𝑁 ) } ) ) | 
						
							| 263 | 249 261 262 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 264 |  | fresaun | ⊢ ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ( 0 [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 265 | 182 196 263 264 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 266 |  | fzsuc | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  →  ( 1 ... ( 𝑛  +  1 ) )  =  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ) | 
						
							| 267 | 198 266 | syl | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 1 ... ( 𝑛  +  1 ) )  =  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ) | 
						
							| 268 | 267 | iuneq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  =  ∪  𝑘  ∈  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 269 |  | iunxun | ⊢ ∪  𝑘  ∈  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ( 𝑄 ‘ 𝑘 )  =  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ∪  𝑘  ∈  { ( 𝑛  +  1 ) } ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 270 |  | ovex | ⊢ ( 𝑛  +  1 )  ∈  V | 
						
							| 271 |  | fveq2 | ⊢ ( 𝑘  =  ( 𝑛  +  1 )  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 272 | 270 271 | iunxsn | ⊢ ∪  𝑘  ∈  { ( 𝑛  +  1 ) } ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) | 
						
							| 273 | 272 | uneq2i | ⊢ ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ∪  𝑘  ∈  { ( 𝑛  +  1 ) } ( 𝑄 ‘ 𝑘 ) )  =  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 274 | 269 273 | eqtri | ⊢ ∪  𝑘  ∈  ( ( 1 ... 𝑛 )  ∪  { ( 𝑛  +  1 ) } ) ( 𝑄 ‘ 𝑘 )  =  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 275 | 268 274 | eqtr2di | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 276 | 275 | feq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵  ↔  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) ) | 
						
							| 277 | 265 276 | mpbid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 278 | 170 | feq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) : ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵  ↔  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) : ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) ) | 
						
							| 279 | 277 278 | mpbid | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) : ∪  ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ⟶ 𝐵 ) | 
						
							| 280 | 275 | reseq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 281 |  | fresaunres1 | ⊢ ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ( 0 [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 282 | 182 196 263 281 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 283 | 280 282 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 284 | 167 | a1i | ⊢ ( ( 𝜑  ∧  𝜒 )  →  𝐿  ∈  Top ) | 
						
							| 285 |  | ovex | ⊢ ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  V | 
						
							| 286 | 285 | a1i | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  V ) | 
						
							| 287 |  | restabs | ⊢ ( ( 𝐿  ∈  Top  ∧  ( 0 [,] ( 𝑛  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∧  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  V )  →  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 288 | 284 153 286 287 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 289 | 288 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 290 | 173 283 289 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  ∈  ( ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 291 | 1 2 3 4 5 6 7 8 9 10 11 12 183 | cvmliftlem8 | ⊢ ( ( 𝜑  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) )  ∈  ( ( 𝐿  ↾t  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 292 | 119 291 | syldan | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) )  ∈  ( ( 𝐿  ↾t  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 293 | 194 | oveq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐿  ↾t  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 294 | 293 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝐿  ↾t  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 295 | 292 294 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝑄 ‘ ( 𝑛  +  1 ) )  ∈  ( ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 296 | 275 | reseq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 297 |  | fresaunres2 | ⊢ ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) : ( 0 [,] ( 𝑛  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝑄 ‘ ( 𝑛  +  1 ) ) : ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ⟶ 𝐵  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝑄 ‘ ( 𝑛  +  1 ) )  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∩  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 298 | 182 196 263 297 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 299 | 296 298 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) | 
						
							| 300 |  | restabs | ⊢ ( ( 𝐿  ∈  Top  ∧  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ⊆  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∧  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) )  ∈  V )  →  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 301 | 284 163 286 300 | syl3anc | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 302 | 301 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  =  ( ( 𝐿  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 303 | 295 299 302 | 3eltr4d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ∈  ( ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  ↾t  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 304 | 115 2 158 165 170 279 290 303 | paste | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 ) ) | 
						
							| 305 | 152 | reseq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 306 | 172 | simprd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) | 
						
							| 307 | 187 | simprd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 308 | 194 | reseq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐺  ↾  ( ( ( ( 𝑛  +  1 )  −  1 )  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  =  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 309 | 307 308 | eqtrd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) )  =  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 310 | 306 309 | uneq12d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  ∪  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  ∪  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 311 |  | coundi | ⊢ ( 𝐹  ∘  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) )  =  ( ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  ∪  ( 𝐹  ∘  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) ) | 
						
							| 312 |  | resundi | ⊢ ( 𝐺  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) )  =  ( ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  ∪  ( 𝐺  ↾  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 313 | 310 311 312 | 3eqtr4g | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) )  =  ( 𝐺  ↾  ( ( 0 [,] ( 𝑛  /  𝑁 ) )  ∪  ( ( 𝑛  /  𝑁 ) [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 314 | 275 | coeq2d | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∪  ( 𝑄 ‘ ( 𝑛  +  1 ) ) ) )  =  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) ) ) | 
						
							| 315 | 305 313 314 | 3eqtr2rd | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) | 
						
							| 316 | 304 315 | jca | ⊢ ( ( 𝜑  ∧  𝜒 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 317 | 14 316 | sylan2br | ⊢ ( ( 𝜑  ∧  ( ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) )  ∧  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) | 
						
							| 318 | 317 | expr | ⊢ ( ( 𝜑  ∧  ( 𝑛  ∈  ℕ  ∧  ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 ) ) )  →  ( ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) ) | 
						
							| 319 | 114 318 | animpimp2impd | ⊢ ( 𝑛  ∈  ℕ  →  ( ( 𝜑  →  ( 𝑛  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑛  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... 𝑛 ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑛  /  𝑁 ) ) ) ) ) )  →  ( 𝜑  →  ( ( 𝑛  +  1 )  ∈  ( 1 ... 𝑁 )  →  ( ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 )  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  ∪  𝑘  ∈  ( 1 ... ( 𝑛  +  1 ) ) ( 𝑄 ‘ 𝑘 ) )  =  ( 𝐺  ↾  ( 0 [,] ( ( 𝑛  +  1 )  /  𝑁 ) ) ) ) ) ) ) ) | 
						
							| 320 | 40 54 68 83 107 319 | nnind | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝜑  →  ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) ) ) | 
						
							| 321 | 8 320 | mpcom | ⊢ ( 𝜑  →  ( 𝑁  ∈  ( 1 ... 𝑁 )  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) ) | 
						
							| 322 | 18 321 | mpd | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( ( 𝐿  ↾t  ( 0 [,] ( 𝑁  /  𝑁 ) ) )  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  ( 𝐺  ↾  ( 0 [,] ( 𝑁  /  𝑁 ) ) ) ) ) |