| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem.k |  |-  K = U_ k e. ( 1 ... N ) ( Q ` k ) | 
						
							| 14 |  | cvmliftlem10.1 |  |-  ( ch <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) | 
						
							| 15 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 16 | 8 15 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 17 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> N e. ( 1 ... N ) ) | 
						
							| 19 |  | eleq1 |  |-  ( y = 1 -> ( y e. ( 1 ... N ) <-> 1 e. ( 1 ... N ) ) ) | 
						
							| 20 |  | oveq2 |  |-  ( y = 1 -> ( 1 ... y ) = ( 1 ... 1 ) ) | 
						
							| 21 |  | 1z |  |-  1 e. ZZ | 
						
							| 22 |  | fzsn |  |-  ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) | 
						
							| 23 | 21 22 | ax-mp |  |-  ( 1 ... 1 ) = { 1 } | 
						
							| 24 | 20 23 | eqtrdi |  |-  ( y = 1 -> ( 1 ... y ) = { 1 } ) | 
						
							| 25 | 24 | iuneq1d |  |-  ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. { 1 } ( Q ` k ) ) | 
						
							| 26 |  | 1ex |  |-  1 e. _V | 
						
							| 27 |  | fveq2 |  |-  ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) ) | 
						
							| 28 | 26 27 | iunxsn |  |-  U_ k e. { 1 } ( Q ` k ) = ( Q ` 1 ) | 
						
							| 29 | 25 28 | eqtrdi |  |-  ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = ( Q ` 1 ) ) | 
						
							| 30 |  | oveq1 |  |-  ( y = 1 -> ( y / N ) = ( 1 / N ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( y = 1 -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( 1 / N ) ) ) | 
						
							| 32 | 31 | oveq2d |  |-  ( y = 1 -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) | 
						
							| 33 | 32 | oveq1d |  |-  ( y = 1 -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) | 
						
							| 34 | 29 33 | eleq12d |  |-  ( y = 1 -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) ) | 
						
							| 35 | 29 | coeq2d |  |-  ( y = 1 -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. ( Q ` 1 ) ) ) | 
						
							| 36 | 31 | reseq2d |  |-  ( y = 1 -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) | 
						
							| 37 | 35 36 | eqeq12d |  |-  ( y = 1 -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) | 
						
							| 38 | 34 37 | anbi12d |  |-  ( y = 1 -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) | 
						
							| 39 | 19 38 | imbi12d |  |-  ( y = 1 -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) | 
						
							| 40 | 39 | imbi2d |  |-  ( y = 1 -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) ) | 
						
							| 41 |  | eleq1 |  |-  ( y = n -> ( y e. ( 1 ... N ) <-> n e. ( 1 ... N ) ) ) | 
						
							| 42 |  | oveq2 |  |-  ( y = n -> ( 1 ... y ) = ( 1 ... n ) ) | 
						
							| 43 | 42 | iuneq1d |  |-  ( y = n -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 44 |  | oveq1 |  |-  ( y = n -> ( y / N ) = ( n / N ) ) | 
						
							| 45 | 44 | oveq2d |  |-  ( y = n -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( n / N ) ) ) | 
						
							| 46 | 45 | oveq2d |  |-  ( y = n -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( y = n -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) | 
						
							| 48 | 43 47 | eleq12d |  |-  ( y = n -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) ) | 
						
							| 49 | 43 | coeq2d |  |-  ( y = n -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) ) | 
						
							| 50 | 45 | reseq2d |  |-  ( y = n -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) | 
						
							| 51 | 49 50 | eqeq12d |  |-  ( y = n -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) | 
						
							| 52 | 48 51 | anbi12d |  |-  ( y = n -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) | 
						
							| 53 | 41 52 | imbi12d |  |-  ( y = n -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) | 
						
							| 54 | 53 | imbi2d |  |-  ( y = n -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) ) | 
						
							| 55 |  | eleq1 |  |-  ( y = ( n + 1 ) -> ( y e. ( 1 ... N ) <-> ( n + 1 ) e. ( 1 ... N ) ) ) | 
						
							| 56 |  | oveq2 |  |-  ( y = ( n + 1 ) -> ( 1 ... y ) = ( 1 ... ( n + 1 ) ) ) | 
						
							| 57 | 56 | iuneq1d |  |-  ( y = ( n + 1 ) -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) | 
						
							| 58 |  | oveq1 |  |-  ( y = ( n + 1 ) -> ( y / N ) = ( ( n + 1 ) / N ) ) | 
						
							| 59 | 58 | oveq2d |  |-  ( y = ( n + 1 ) -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 60 | 59 | oveq2d |  |-  ( y = ( n + 1 ) -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 61 | 60 | oveq1d |  |-  ( y = ( n + 1 ) -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 62 | 57 61 | eleq12d |  |-  ( y = ( n + 1 ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) ) | 
						
							| 63 | 57 | coeq2d |  |-  ( y = ( n + 1 ) -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) | 
						
							| 64 | 59 | reseq2d |  |-  ( y = ( n + 1 ) -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 65 | 63 64 | eqeq12d |  |-  ( y = ( n + 1 ) -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 66 | 62 65 | anbi12d |  |-  ( y = ( n + 1 ) -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) | 
						
							| 67 | 55 66 | imbi12d |  |-  ( y = ( n + 1 ) -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) | 
						
							| 68 | 67 | imbi2d |  |-  ( y = ( n + 1 ) -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) | 
						
							| 69 |  | eleq1 |  |-  ( y = N -> ( y e. ( 1 ... N ) <-> N e. ( 1 ... N ) ) ) | 
						
							| 70 |  | oveq2 |  |-  ( y = N -> ( 1 ... y ) = ( 1 ... N ) ) | 
						
							| 71 | 70 | iuneq1d |  |-  ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... N ) ( Q ` k ) ) | 
						
							| 72 | 71 13 | eqtr4di |  |-  ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = K ) | 
						
							| 73 |  | oveq1 |  |-  ( y = N -> ( y / N ) = ( N / N ) ) | 
						
							| 74 | 73 | oveq2d |  |-  ( y = N -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( N / N ) ) ) | 
						
							| 75 | 74 | oveq2d |  |-  ( y = N -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( N / N ) ) ) ) | 
						
							| 76 | 75 | oveq1d |  |-  ( y = N -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) | 
						
							| 77 | 72 76 | eleq12d |  |-  ( y = N -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) ) | 
						
							| 78 | 72 | coeq2d |  |-  ( y = N -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. K ) ) | 
						
							| 79 | 74 | reseq2d |  |-  ( y = N -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( N / N ) ) ) ) | 
						
							| 80 | 78 79 | eqeq12d |  |-  ( y = N -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) | 
						
							| 81 | 77 80 | anbi12d |  |-  ( y = N -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) | 
						
							| 82 | 69 81 | imbi12d |  |-  ( y = N -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) | 
						
							| 83 | 82 | imbi2d |  |-  ( y = N -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) ) | 
						
							| 84 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 85 | 16 84 | syl |  |-  ( ph -> 1 e. ( 1 ... N ) ) | 
						
							| 86 |  | eqid |  |-  ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) | 
						
							| 87 | 1 2 3 4 5 6 7 8 9 10 11 12 86 | cvmliftlem8 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) | 
						
							| 88 | 85 87 | mpdan |  |-  ( ph -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) | 
						
							| 89 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 90 | 89 | oveq1i |  |-  ( ( 1 - 1 ) / N ) = ( 0 / N ) | 
						
							| 91 | 8 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 92 | 8 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 93 | 91 92 | div0d |  |-  ( ph -> ( 0 / N ) = 0 ) | 
						
							| 94 | 90 93 | eqtrid |  |-  ( ph -> ( ( 1 - 1 ) / N ) = 0 ) | 
						
							| 95 | 94 | oveq1d |  |-  ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) ) | 
						
							| 96 | 95 | oveq2d |  |-  ( ph -> ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ph -> ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) | 
						
							| 98 | 88 97 | eleqtrd |  |-  ( ph -> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) | 
						
							| 99 |  | simpr |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) | 
						
							| 100 | 1 2 3 4 5 6 7 8 9 10 11 12 86 | cvmliftlem7 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) ) | 
						
							| 101 | 1 2 3 4 5 6 7 8 9 10 11 12 86 99 100 | cvmliftlem6 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) | 
						
							| 102 | 85 101 | mpdan |  |-  ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) | 
						
							| 103 | 102 | simprd |  |-  ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) | 
						
							| 104 | 95 | reseq2d |  |-  ( ph -> ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) | 
						
							| 105 | 103 104 | eqtrd |  |-  ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) | 
						
							| 106 | 98 105 | jca |  |-  ( ph -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) | 
						
							| 107 | 106 | a1d |  |-  ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) | 
						
							| 108 |  | elnnuz |  |-  ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) | 
						
							| 109 | 108 | biimpi |  |-  ( n e. NN -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 111 |  | peano2fzr |  |-  ( ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) | 
						
							| 112 | 111 | ex |  |-  ( n e. ( ZZ>= ` 1 ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) | 
						
							| 113 | 110 112 | syl |  |-  ( ( ph /\ n e. NN ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) | 
						
							| 114 | 113 | imim1d |  |-  ( ( ph /\ n e. NN ) -> ( ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) | 
						
							| 115 |  | eqid |  |-  U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 116 |  | 0re |  |-  0 e. RR | 
						
							| 117 | 14 | simplbi |  |-  ( ch -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ph /\ ch ) -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) | 
						
							| 119 | 118 | simprd |  |-  ( ( ph /\ ch ) -> ( n + 1 ) e. ( 1 ... N ) ) | 
						
							| 120 |  | elfznn |  |-  ( ( n + 1 ) e. ( 1 ... N ) -> ( n + 1 ) e. NN ) | 
						
							| 121 | 119 120 | syl |  |-  ( ( ph /\ ch ) -> ( n + 1 ) e. NN ) | 
						
							| 122 | 121 | nnred |  |-  ( ( ph /\ ch ) -> ( n + 1 ) e. RR ) | 
						
							| 123 | 8 | adantr |  |-  ( ( ph /\ ch ) -> N e. NN ) | 
						
							| 124 | 122 123 | nndivred |  |-  ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR ) | 
						
							| 125 |  | iccssre |  |-  ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) | 
						
							| 126 | 116 124 125 | sylancr |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) | 
						
							| 127 | 117 | simpld |  |-  ( ch -> n e. NN ) | 
						
							| 128 | 127 | adantl |  |-  ( ( ph /\ ch ) -> n e. NN ) | 
						
							| 129 | 128 | nnred |  |-  ( ( ph /\ ch ) -> n e. RR ) | 
						
							| 130 | 129 123 | nndivred |  |-  ( ( ph /\ ch ) -> ( n / N ) e. RR ) | 
						
							| 131 |  | icccld |  |-  ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 132 | 116 130 131 | sylancr |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 133 | 11 | fveq2i |  |-  ( Clsd ` L ) = ( Clsd ` ( topGen ` ran (,) ) ) | 
						
							| 134 | 132 133 | eleqtrrdi |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) ) | 
						
							| 135 |  | ssun1 |  |-  ( 0 [,] ( n / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 136 | 116 | a1i |  |-  ( ( ph /\ ch ) -> 0 e. RR ) | 
						
							| 137 | 128 | nnnn0d |  |-  ( ( ph /\ ch ) -> n e. NN0 ) | 
						
							| 138 | 137 | nn0ge0d |  |-  ( ( ph /\ ch ) -> 0 <_ n ) | 
						
							| 139 | 123 | nnred |  |-  ( ( ph /\ ch ) -> N e. RR ) | 
						
							| 140 | 123 | nngt0d |  |-  ( ( ph /\ ch ) -> 0 < N ) | 
						
							| 141 |  | divge0 |  |-  ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( n / N ) ) | 
						
							| 142 | 129 138 139 140 141 | syl22anc |  |-  ( ( ph /\ ch ) -> 0 <_ ( n / N ) ) | 
						
							| 143 | 129 | ltp1d |  |-  ( ( ph /\ ch ) -> n < ( n + 1 ) ) | 
						
							| 144 |  | ltdiv1 |  |-  ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) | 
						
							| 145 | 129 122 139 140 144 | syl112anc |  |-  ( ( ph /\ ch ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) | 
						
							| 146 | 143 145 | mpbid |  |-  ( ( ph /\ ch ) -> ( n / N ) < ( ( n + 1 ) / N ) ) | 
						
							| 147 | 130 124 146 | ltled |  |-  ( ( ph /\ ch ) -> ( n / N ) <_ ( ( n + 1 ) / N ) ) | 
						
							| 148 |  | elicc2 |  |-  ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) | 
						
							| 149 | 116 124 148 | sylancr |  |-  ( ( ph /\ ch ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) | 
						
							| 150 | 130 142 147 149 | mpbir3and |  |-  ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 151 |  | iccsplit |  |-  ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR /\ ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 152 | 136 124 150 151 | syl3anc |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 153 | 135 152 | sseqtrrid |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 154 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 155 | 11 | unieqi |  |-  U. L = U. ( topGen ` ran (,) ) | 
						
							| 156 | 154 155 | eqtr4i |  |-  RR = U. L | 
						
							| 157 | 156 | restcldi |  |-  ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 158 | 126 134 153 157 | syl3anc |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 159 |  | icccld |  |-  ( ( ( n / N ) e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 160 | 130 124 159 | syl2anc |  |-  ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) | 
						
							| 161 | 160 133 | eleqtrrdi |  |-  ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) ) | 
						
							| 162 |  | ssun2 |  |-  ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 163 | 162 152 | sseqtrrid |  |-  ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 164 | 156 | restcldi |  |-  ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 165 | 126 161 163 164 | syl3anc |  |-  ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 166 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 167 | 11 166 | eqeltri |  |-  L e. Top | 
						
							| 168 | 156 | restuni |  |-  ( ( L e. Top /\ ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 169 | 167 126 168 | sylancr |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 170 | 152 169 | eqtr3d |  |-  ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 171 | 14 | simprbi |  |-  ( ch -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) | 
						
							| 172 | 171 | adantl |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) | 
						
							| 173 | 172 | simpld |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) | 
						
							| 174 |  | eqid |  |-  U. ( L |`t ( 0 [,] ( n / N ) ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) | 
						
							| 175 | 174 2 | cnf |  |-  ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) | 
						
							| 176 | 173 175 | syl |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) | 
						
							| 177 |  | iccssre |  |-  ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) C_ RR ) | 
						
							| 178 | 116 130 177 | sylancr |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ RR ) | 
						
							| 179 | 156 | restuni |  |-  ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ RR ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) | 
						
							| 180 | 167 178 179 | sylancr |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) | 
						
							| 181 | 180 | feq2d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B <-> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) ) | 
						
							| 182 | 176 181 | mpbird |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B ) | 
						
							| 183 |  | eqid |  |-  ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) | 
						
							| 184 |  | simpr |  |-  ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( n + 1 ) e. ( 1 ... N ) ) | 
						
							| 185 | 1 2 3 4 5 6 7 8 9 10 11 12 183 | cvmliftlem7 |  |-  ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) ) | 
						
							| 186 | 1 2 3 4 5 6 7 8 9 10 11 12 183 184 185 | cvmliftlem6 |  |-  ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 187 | 119 186 | syldan |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 188 | 187 | simpld |  |-  ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B ) | 
						
							| 189 | 128 | nncnd |  |-  ( ( ph /\ ch ) -> n e. CC ) | 
						
							| 190 |  | ax-1cn |  |-  1 e. CC | 
						
							| 191 |  | pncan |  |-  ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 192 | 189 190 191 | sylancl |  |-  ( ( ph /\ ch ) -> ( ( n + 1 ) - 1 ) = n ) | 
						
							| 193 | 192 | oveq1d |  |-  ( ( ph /\ ch ) -> ( ( ( n + 1 ) - 1 ) / N ) = ( n / N ) ) | 
						
							| 194 | 193 | oveq1d |  |-  ( ( ph /\ ch ) -> ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 195 | 194 | feq2d |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B <-> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) ) | 
						
							| 196 | 188 195 | mpbid |  |-  ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) | 
						
							| 197 | 176 | ffund |  |-  ( ( ph /\ ch ) -> Fun U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 198 | 128 109 | syl |  |-  ( ( ph /\ ch ) -> n e. ( ZZ>= ` 1 ) ) | 
						
							| 199 |  | eluzfz2 |  |-  ( n e. ( ZZ>= ` 1 ) -> n e. ( 1 ... n ) ) | 
						
							| 200 | 198 199 | syl |  |-  ( ( ph /\ ch ) -> n e. ( 1 ... n ) ) | 
						
							| 201 |  | fveq2 |  |-  ( k = n -> ( Q ` k ) = ( Q ` n ) ) | 
						
							| 202 | 201 | ssiun2s |  |-  ( n e. ( 1 ... n ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 203 | 200 202 | syl |  |-  ( ( ph /\ ch ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 204 |  | peano2rem |  |-  ( n e. RR -> ( n - 1 ) e. RR ) | 
						
							| 205 | 129 204 | syl |  |-  ( ( ph /\ ch ) -> ( n - 1 ) e. RR ) | 
						
							| 206 | 205 123 | nndivred |  |-  ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR ) | 
						
							| 207 | 206 | rexrd |  |-  ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR* ) | 
						
							| 208 | 130 | rexrd |  |-  ( ( ph /\ ch ) -> ( n / N ) e. RR* ) | 
						
							| 209 | 129 | ltm1d |  |-  ( ( ph /\ ch ) -> ( n - 1 ) < n ) | 
						
							| 210 |  | ltdiv1 |  |-  ( ( ( n - 1 ) e. RR /\ n e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) | 
						
							| 211 | 205 129 139 140 210 | syl112anc |  |-  ( ( ph /\ ch ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) | 
						
							| 212 | 209 211 | mpbid |  |-  ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) < ( n / N ) ) | 
						
							| 213 | 206 130 212 | ltled |  |-  ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) <_ ( n / N ) ) | 
						
							| 214 |  | ubicc2 |  |-  ( ( ( ( n - 1 ) / N ) e. RR* /\ ( n / N ) e. RR* /\ ( ( n - 1 ) / N ) <_ ( n / N ) ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) | 
						
							| 215 | 207 208 213 214 | syl3anc |  |-  ( ( ph /\ ch ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) | 
						
							| 216 | 198 119 111 | syl2anc |  |-  ( ( ph /\ ch ) -> n e. ( 1 ... N ) ) | 
						
							| 217 |  | eqid |  |-  ( ( ( n - 1 ) / N ) [,] ( n / N ) ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) | 
						
							| 218 |  | simpr |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) | 
						
							| 219 | 1 2 3 4 5 6 7 8 9 10 11 12 217 | cvmliftlem7 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` ( n - 1 ) ) ` ( ( n - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n - 1 ) / N ) ) } ) ) | 
						
							| 220 | 1 2 3 4 5 6 7 8 9 10 11 12 217 218 219 | cvmliftlem6 |  |-  ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) | 
						
							| 221 | 216 220 | syldan |  |-  ( ( ph /\ ch ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) | 
						
							| 222 | 221 | simpld |  |-  ( ( ph /\ ch ) -> ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B ) | 
						
							| 223 | 222 | fdmd |  |-  ( ( ph /\ ch ) -> dom ( Q ` n ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) | 
						
							| 224 | 215 223 | eleqtrrd |  |-  ( ( ph /\ ch ) -> ( n / N ) e. dom ( Q ` n ) ) | 
						
							| 225 |  | funssfv |  |-  ( ( Fun U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( n / N ) e. dom ( Q ` n ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) | 
						
							| 226 | 197 203 224 225 | syl3anc |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) | 
						
							| 227 | 192 | fveq2d |  |-  ( ( ph /\ ch ) -> ( Q ` ( ( n + 1 ) - 1 ) ) = ( Q ` n ) ) | 
						
							| 228 | 227 193 | fveq12d |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) | 
						
							| 229 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem9 |  |-  ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) | 
						
							| 230 | 119 229 | syldan |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) | 
						
							| 231 | 193 | fveq2d |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) | 
						
							| 232 | 230 231 | eqtr3d |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) | 
						
							| 233 | 226 228 232 | 3eqtr2d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) | 
						
							| 234 | 233 | opeq2d |  |-  ( ( ph /\ ch ) -> <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. = <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. ) | 
						
							| 235 | 234 | sneqd |  |-  ( ( ph /\ ch ) -> { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) | 
						
							| 236 | 182 | ffnd |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) ) | 
						
							| 237 |  | 0xr |  |-  0 e. RR* | 
						
							| 238 | 237 | a1i |  |-  ( ( ph /\ ch ) -> 0 e. RR* ) | 
						
							| 239 |  | ubicc2 |  |-  ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ 0 <_ ( n / N ) ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) | 
						
							| 240 | 238 208 142 239 | syl3anc |  |-  ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) | 
						
							| 241 |  | fnressn |  |-  ( ( U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) /\ ( n / N ) e. ( 0 [,] ( n / N ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) | 
						
							| 242 | 236 240 241 | syl2anc |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) | 
						
							| 243 | 196 | ffnd |  |-  ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 244 | 124 | rexrd |  |-  ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR* ) | 
						
							| 245 |  | lbicc2 |  |-  ( ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 246 | 208 244 147 245 | syl3anc |  |-  ( ( ph /\ ch ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) | 
						
							| 247 |  | fnressn |  |-  ( ( ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) /\ ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) | 
						
							| 248 | 243 246 247 | syl2anc |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) | 
						
							| 249 | 235 242 248 | 3eqtr4d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) | 
						
							| 250 |  | df-icc |  |-  [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) | 
						
							| 251 |  | xrmaxle |  |-  ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ z e. RR* ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) <_ z <-> ( 0 <_ z /\ ( n / N ) <_ z ) ) ) | 
						
							| 252 |  | xrlemin |  |-  ( ( z e. RR* /\ ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) -> ( z <_ if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) <-> ( z <_ ( n / N ) /\ z <_ ( ( n + 1 ) / N ) ) ) ) | 
						
							| 253 | 250 251 252 | ixxin |  |-  ( ( ( 0 e. RR* /\ ( n / N ) e. RR* ) /\ ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) | 
						
							| 254 | 238 208 208 244 253 | syl22anc |  |-  ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) | 
						
							| 255 | 142 | iftrued |  |-  ( ( ph /\ ch ) -> if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) = ( n / N ) ) | 
						
							| 256 | 147 | iftrued |  |-  ( ( ph /\ ch ) -> if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) = ( n / N ) ) | 
						
							| 257 | 255 256 | oveq12d |  |-  ( ( ph /\ ch ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) = ( ( n / N ) [,] ( n / N ) ) ) | 
						
							| 258 |  | iccid |  |-  ( ( n / N ) e. RR* -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) | 
						
							| 259 | 208 258 | syl |  |-  ( ( ph /\ ch ) -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) | 
						
							| 260 | 254 257 259 | 3eqtrd |  |-  ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = { ( n / N ) } ) | 
						
							| 261 | 260 | reseq2d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) ) | 
						
							| 262 | 260 | reseq2d |  |-  ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) | 
						
							| 263 | 249 261 262 | 3eqtr4d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 264 |  | fresaun |  |-  ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) | 
						
							| 265 | 182 196 263 264 | syl3anc |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) | 
						
							| 266 |  | fzsuc |  |-  ( n e. ( ZZ>= ` 1 ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) | 
						
							| 267 | 198 266 | syl |  |-  ( ( ph /\ ch ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) | 
						
							| 268 | 267 | iuneq1d |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) = U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) ) | 
						
							| 269 |  | iunxun |  |-  U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) | 
						
							| 270 |  | ovex |  |-  ( n + 1 ) e. _V | 
						
							| 271 |  | fveq2 |  |-  ( k = ( n + 1 ) -> ( Q ` k ) = ( Q ` ( n + 1 ) ) ) | 
						
							| 272 | 270 271 | iunxsn |  |-  U_ k e. { ( n + 1 ) } ( Q ` k ) = ( Q ` ( n + 1 ) ) | 
						
							| 273 | 272 | uneq2i |  |-  ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) | 
						
							| 274 | 269 273 | eqtri |  |-  U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) | 
						
							| 275 | 268 274 | eqtr2di |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) | 
						
							| 276 | 275 | feq1d |  |-  ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) ) | 
						
							| 277 | 265 276 | mpbid |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) | 
						
							| 278 | 170 | feq2d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) ) | 
						
							| 279 | 277 278 | mpbid |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) | 
						
							| 280 | 275 | reseq1d |  |-  ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) ) | 
						
							| 281 |  | fresaunres1 |  |-  ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 282 | 182 196 263 281 | syl3anc |  |-  ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 283 | 280 282 | eqtr3d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) | 
						
							| 284 | 167 | a1i |  |-  ( ( ph /\ ch ) -> L e. Top ) | 
						
							| 285 |  | ovex |  |-  ( 0 [,] ( ( n + 1 ) / N ) ) e. _V | 
						
							| 286 | 285 | a1i |  |-  ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) | 
						
							| 287 |  | restabs |  |-  ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) | 
						
							| 288 | 284 153 286 287 | syl3anc |  |-  ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) | 
						
							| 289 | 288 | oveq1d |  |-  ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) | 
						
							| 290 | 173 283 289 | 3eltr4d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) | 
						
							| 291 | 1 2 3 4 5 6 7 8 9 10 11 12 183 | cvmliftlem8 |  |-  ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 292 | 119 291 | syldan |  |-  ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 293 | 194 | oveq2d |  |-  ( ( ph /\ ch ) -> ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 294 | 293 | oveq1d |  |-  ( ( ph /\ ch ) -> ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 295 | 292 294 | eleqtrd |  |-  ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 296 | 275 | reseq1d |  |-  ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 297 |  | fresaunres2 |  |-  ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) | 
						
							| 298 | 182 196 263 297 | syl3anc |  |-  ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) | 
						
							| 299 | 296 298 | eqtr3d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) | 
						
							| 300 |  | restabs |  |-  ( ( L e. Top /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 301 | 284 163 286 300 | syl3anc |  |-  ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 302 | 301 | oveq1d |  |-  ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 303 | 295 299 302 | 3eltr4d |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 304 | 115 2 158 165 170 279 290 303 | paste |  |-  ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) | 
						
							| 305 | 152 | reseq2d |  |-  ( ( ph /\ ch ) -> ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 306 | 172 | simprd |  |-  ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) | 
						
							| 307 | 187 | simprd |  |-  ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 308 | 194 | reseq2d |  |-  ( ( ph /\ ch ) -> ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 309 | 307 308 | eqtrd |  |-  ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 310 | 306 309 | uneq12d |  |-  ( ( ph /\ ch ) -> ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 311 |  | coundi |  |-  ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) | 
						
							| 312 |  | resundi |  |-  ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 313 | 310 311 312 | 3eqtr4g |  |-  ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 314 | 275 | coeq2d |  |-  ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) | 
						
							| 315 | 305 313 314 | 3eqtr2rd |  |-  ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) | 
						
							| 316 | 304 315 | jca |  |-  ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 317 | 14 316 | sylan2br |  |-  ( ( ph /\ ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) | 
						
							| 318 | 317 | expr |  |-  ( ( ph /\ ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) | 
						
							| 319 | 114 318 | animpimp2impd |  |-  ( n e. NN -> ( ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) | 
						
							| 320 | 40 54 68 83 107 319 | nnind |  |-  ( N e. NN -> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) | 
						
							| 321 | 8 320 | mpcom |  |-  ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) | 
						
							| 322 | 18 321 | mpd |  |-  ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |