| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
| 2 |
|
cvmliftlem.b |
|- B = U. C |
| 3 |
|
cvmliftlem.x |
|- X = U. J |
| 4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
| 5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
| 6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
| 7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
| 8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
| 9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
| 10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
| 11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
| 12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
| 13 |
|
cvmliftlem.k |
|- K = U_ k e. ( 1 ... N ) ( Q ` k ) |
| 14 |
|
cvmliftlem10.1 |
|- ( ch <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) |
| 15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 16 |
8 15
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
| 17 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
| 18 |
16 17
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
| 19 |
|
eleq1 |
|- ( y = 1 -> ( y e. ( 1 ... N ) <-> 1 e. ( 1 ... N ) ) ) |
| 20 |
|
oveq2 |
|- ( y = 1 -> ( 1 ... y ) = ( 1 ... 1 ) ) |
| 21 |
|
1z |
|- 1 e. ZZ |
| 22 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 23 |
21 22
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
| 24 |
20 23
|
eqtrdi |
|- ( y = 1 -> ( 1 ... y ) = { 1 } ) |
| 25 |
24
|
iuneq1d |
|- ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. { 1 } ( Q ` k ) ) |
| 26 |
|
1ex |
|- 1 e. _V |
| 27 |
|
fveq2 |
|- ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) ) |
| 28 |
26 27
|
iunxsn |
|- U_ k e. { 1 } ( Q ` k ) = ( Q ` 1 ) |
| 29 |
25 28
|
eqtrdi |
|- ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = ( Q ` 1 ) ) |
| 30 |
|
oveq1 |
|- ( y = 1 -> ( y / N ) = ( 1 / N ) ) |
| 31 |
30
|
oveq2d |
|- ( y = 1 -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( 1 / N ) ) ) |
| 32 |
31
|
oveq2d |
|- ( y = 1 -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) |
| 33 |
32
|
oveq1d |
|- ( y = 1 -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
| 34 |
29 33
|
eleq12d |
|- ( y = 1 -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) ) |
| 35 |
29
|
coeq2d |
|- ( y = 1 -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. ( Q ` 1 ) ) ) |
| 36 |
31
|
reseq2d |
|- ( y = 1 -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
| 37 |
35 36
|
eqeq12d |
|- ( y = 1 -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) |
| 38 |
34 37
|
anbi12d |
|- ( y = 1 -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) |
| 39 |
19 38
|
imbi12d |
|- ( y = 1 -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) |
| 40 |
39
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) ) |
| 41 |
|
eleq1 |
|- ( y = n -> ( y e. ( 1 ... N ) <-> n e. ( 1 ... N ) ) ) |
| 42 |
|
oveq2 |
|- ( y = n -> ( 1 ... y ) = ( 1 ... n ) ) |
| 43 |
42
|
iuneq1d |
|- ( y = n -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 44 |
|
oveq1 |
|- ( y = n -> ( y / N ) = ( n / N ) ) |
| 45 |
44
|
oveq2d |
|- ( y = n -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( n / N ) ) ) |
| 46 |
45
|
oveq2d |
|- ( y = n -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
| 47 |
46
|
oveq1d |
|- ( y = n -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
| 48 |
43 47
|
eleq12d |
|- ( y = n -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) ) |
| 49 |
43
|
coeq2d |
|- ( y = n -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) ) |
| 50 |
45
|
reseq2d |
|- ( y = n -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) |
| 51 |
49 50
|
eqeq12d |
|- ( y = n -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
| 52 |
48 51
|
anbi12d |
|- ( y = n -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) |
| 53 |
41 52
|
imbi12d |
|- ( y = n -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) |
| 54 |
53
|
imbi2d |
|- ( y = n -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) ) |
| 55 |
|
eleq1 |
|- ( y = ( n + 1 ) -> ( y e. ( 1 ... N ) <-> ( n + 1 ) e. ( 1 ... N ) ) ) |
| 56 |
|
oveq2 |
|- ( y = ( n + 1 ) -> ( 1 ... y ) = ( 1 ... ( n + 1 ) ) ) |
| 57 |
56
|
iuneq1d |
|- ( y = ( n + 1 ) -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) |
| 58 |
|
oveq1 |
|- ( y = ( n + 1 ) -> ( y / N ) = ( ( n + 1 ) / N ) ) |
| 59 |
58
|
oveq2d |
|- ( y = ( n + 1 ) -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( ( n + 1 ) / N ) ) ) |
| 60 |
59
|
oveq2d |
|- ( y = ( n + 1 ) -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 61 |
60
|
oveq1d |
|- ( y = ( n + 1 ) -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 62 |
57 61
|
eleq12d |
|- ( y = ( n + 1 ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) ) |
| 63 |
57
|
coeq2d |
|- ( y = ( n + 1 ) -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) |
| 64 |
59
|
reseq2d |
|- ( y = ( n + 1 ) -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 65 |
63 64
|
eqeq12d |
|- ( y = ( n + 1 ) -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 66 |
62 65
|
anbi12d |
|- ( y = ( n + 1 ) -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) |
| 67 |
55 66
|
imbi12d |
|- ( y = ( n + 1 ) -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) |
| 68 |
67
|
imbi2d |
|- ( y = ( n + 1 ) -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) |
| 69 |
|
eleq1 |
|- ( y = N -> ( y e. ( 1 ... N ) <-> N e. ( 1 ... N ) ) ) |
| 70 |
|
oveq2 |
|- ( y = N -> ( 1 ... y ) = ( 1 ... N ) ) |
| 71 |
70
|
iuneq1d |
|- ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... N ) ( Q ` k ) ) |
| 72 |
71 13
|
eqtr4di |
|- ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = K ) |
| 73 |
|
oveq1 |
|- ( y = N -> ( y / N ) = ( N / N ) ) |
| 74 |
73
|
oveq2d |
|- ( y = N -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( N / N ) ) ) |
| 75 |
74
|
oveq2d |
|- ( y = N -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( N / N ) ) ) ) |
| 76 |
75
|
oveq1d |
|- ( y = N -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) |
| 77 |
72 76
|
eleq12d |
|- ( y = N -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) ) |
| 78 |
72
|
coeq2d |
|- ( y = N -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. K ) ) |
| 79 |
74
|
reseq2d |
|- ( y = N -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( N / N ) ) ) ) |
| 80 |
78 79
|
eqeq12d |
|- ( y = N -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |
| 81 |
77 80
|
anbi12d |
|- ( y = N -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) |
| 82 |
69 81
|
imbi12d |
|- ( y = N -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) |
| 83 |
82
|
imbi2d |
|- ( y = N -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) ) |
| 84 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
| 85 |
16 84
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
| 86 |
|
eqid |
|- ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) |
| 87 |
1 2 3 4 5 6 7 8 9 10 11 12 86
|
cvmliftlem8 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) |
| 88 |
85 87
|
mpdan |
|- ( ph -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) |
| 89 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 90 |
89
|
oveq1i |
|- ( ( 1 - 1 ) / N ) = ( 0 / N ) |
| 91 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
| 92 |
8
|
nnne0d |
|- ( ph -> N =/= 0 ) |
| 93 |
91 92
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
| 94 |
90 93
|
eqtrid |
|- ( ph -> ( ( 1 - 1 ) / N ) = 0 ) |
| 95 |
94
|
oveq1d |
|- ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) ) |
| 96 |
95
|
oveq2d |
|- ( ph -> ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) |
| 97 |
96
|
oveq1d |
|- ( ph -> ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
| 98 |
88 97
|
eleqtrd |
|- ( ph -> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
| 99 |
|
simpr |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 86
|
cvmliftlem7 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) ) |
| 101 |
1 2 3 4 5 6 7 8 9 10 11 12 86 99 100
|
cvmliftlem6 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
| 102 |
85 101
|
mpdan |
|- ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
| 103 |
102
|
simprd |
|- ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) |
| 104 |
95
|
reseq2d |
|- ( ph -> ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
| 105 |
103 104
|
eqtrd |
|- ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
| 106 |
98 105
|
jca |
|- ( ph -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) |
| 107 |
106
|
a1d |
|- ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) |
| 108 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
| 109 |
108
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
| 110 |
109
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 111 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) |
| 112 |
111
|
ex |
|- ( n e. ( ZZ>= ` 1 ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) |
| 113 |
110 112
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) |
| 114 |
113
|
imim1d |
|- ( ( ph /\ n e. NN ) -> ( ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) |
| 115 |
|
eqid |
|- U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |
| 116 |
|
0re |
|- 0 e. RR |
| 117 |
14
|
simplbi |
|- ( ch -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) |
| 118 |
117
|
adantl |
|- ( ( ph /\ ch ) -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) |
| 119 |
118
|
simprd |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. ( 1 ... N ) ) |
| 120 |
|
elfznn |
|- ( ( n + 1 ) e. ( 1 ... N ) -> ( n + 1 ) e. NN ) |
| 121 |
119 120
|
syl |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. NN ) |
| 122 |
121
|
nnred |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. RR ) |
| 123 |
8
|
adantr |
|- ( ( ph /\ ch ) -> N e. NN ) |
| 124 |
122 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR ) |
| 125 |
|
iccssre |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) |
| 126 |
116 124 125
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) |
| 127 |
117
|
simpld |
|- ( ch -> n e. NN ) |
| 128 |
127
|
adantl |
|- ( ( ph /\ ch ) -> n e. NN ) |
| 129 |
128
|
nnred |
|- ( ( ph /\ ch ) -> n e. RR ) |
| 130 |
129 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( n / N ) e. RR ) |
| 131 |
|
icccld |
|- ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 132 |
116 130 131
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 133 |
11
|
fveq2i |
|- ( Clsd ` L ) = ( Clsd ` ( topGen ` ran (,) ) ) |
| 134 |
132 133
|
eleqtrrdi |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) ) |
| 135 |
|
ssun1 |
|- ( 0 [,] ( n / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 136 |
116
|
a1i |
|- ( ( ph /\ ch ) -> 0 e. RR ) |
| 137 |
128
|
nnnn0d |
|- ( ( ph /\ ch ) -> n e. NN0 ) |
| 138 |
137
|
nn0ge0d |
|- ( ( ph /\ ch ) -> 0 <_ n ) |
| 139 |
123
|
nnred |
|- ( ( ph /\ ch ) -> N e. RR ) |
| 140 |
123
|
nngt0d |
|- ( ( ph /\ ch ) -> 0 < N ) |
| 141 |
|
divge0 |
|- ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( n / N ) ) |
| 142 |
129 138 139 140 141
|
syl22anc |
|- ( ( ph /\ ch ) -> 0 <_ ( n / N ) ) |
| 143 |
129
|
ltp1d |
|- ( ( ph /\ ch ) -> n < ( n + 1 ) ) |
| 144 |
|
ltdiv1 |
|- ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
| 145 |
129 122 139 140 144
|
syl112anc |
|- ( ( ph /\ ch ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
| 146 |
143 145
|
mpbid |
|- ( ( ph /\ ch ) -> ( n / N ) < ( ( n + 1 ) / N ) ) |
| 147 |
130 124 146
|
ltled |
|- ( ( ph /\ ch ) -> ( n / N ) <_ ( ( n + 1 ) / N ) ) |
| 148 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) |
| 149 |
116 124 148
|
sylancr |
|- ( ( ph /\ ch ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) |
| 150 |
130 142 147 149
|
mpbir3and |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) |
| 151 |
|
iccsplit |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR /\ ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 152 |
136 124 150 151
|
syl3anc |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 153 |
135 152
|
sseqtrrid |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) |
| 154 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
| 155 |
11
|
unieqi |
|- U. L = U. ( topGen ` ran (,) ) |
| 156 |
154 155
|
eqtr4i |
|- RR = U. L |
| 157 |
156
|
restcldi |
|- ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 158 |
126 134 153 157
|
syl3anc |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 159 |
|
icccld |
|- ( ( ( n / N ) e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 160 |
130 124 159
|
syl2anc |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
| 161 |
160 133
|
eleqtrrdi |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) ) |
| 162 |
|
ssun2 |
|- ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 163 |
162 152
|
sseqtrrid |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) |
| 164 |
156
|
restcldi |
|- ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 165 |
126 161 163 164
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 166 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
| 167 |
11 166
|
eqeltri |
|- L e. Top |
| 168 |
156
|
restuni |
|- ( ( L e. Top /\ ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 169 |
167 126 168
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 170 |
152 169
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 171 |
14
|
simprbi |
|- ( ch -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
| 172 |
171
|
adantl |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
| 173 |
172
|
simpld |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
| 174 |
|
eqid |
|- U. ( L |`t ( 0 [,] ( n / N ) ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) |
| 175 |
174 2
|
cnf |
|- ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) |
| 176 |
173 175
|
syl |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) |
| 177 |
|
iccssre |
|- ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) C_ RR ) |
| 178 |
116 130 177
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ RR ) |
| 179 |
156
|
restuni |
|- ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ RR ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) |
| 180 |
167 178 179
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) |
| 181 |
180
|
feq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B <-> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) ) |
| 182 |
176 181
|
mpbird |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B ) |
| 183 |
|
eqid |
|- ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) |
| 184 |
|
simpr |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( n + 1 ) e. ( 1 ... N ) ) |
| 185 |
1 2 3 4 5 6 7 8 9 10 11 12 183
|
cvmliftlem7 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) ) |
| 186 |
1 2 3 4 5 6 7 8 9 10 11 12 183 184 185
|
cvmliftlem6 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 187 |
119 186
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 188 |
187
|
simpld |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
| 189 |
128
|
nncnd |
|- ( ( ph /\ ch ) -> n e. CC ) |
| 190 |
|
ax-1cn |
|- 1 e. CC |
| 191 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
| 192 |
189 190 191
|
sylancl |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) - 1 ) = n ) |
| 193 |
192
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( n + 1 ) - 1 ) / N ) = ( n / N ) ) |
| 194 |
193
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 195 |
194
|
feq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B <-> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) ) |
| 196 |
188 195
|
mpbid |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
| 197 |
176
|
ffund |
|- ( ( ph /\ ch ) -> Fun U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 198 |
128 109
|
syl |
|- ( ( ph /\ ch ) -> n e. ( ZZ>= ` 1 ) ) |
| 199 |
|
eluzfz2 |
|- ( n e. ( ZZ>= ` 1 ) -> n e. ( 1 ... n ) ) |
| 200 |
198 199
|
syl |
|- ( ( ph /\ ch ) -> n e. ( 1 ... n ) ) |
| 201 |
|
fveq2 |
|- ( k = n -> ( Q ` k ) = ( Q ` n ) ) |
| 202 |
201
|
ssiun2s |
|- ( n e. ( 1 ... n ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 203 |
200 202
|
syl |
|- ( ( ph /\ ch ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 204 |
|
peano2rem |
|- ( n e. RR -> ( n - 1 ) e. RR ) |
| 205 |
129 204
|
syl |
|- ( ( ph /\ ch ) -> ( n - 1 ) e. RR ) |
| 206 |
205 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR ) |
| 207 |
206
|
rexrd |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR* ) |
| 208 |
130
|
rexrd |
|- ( ( ph /\ ch ) -> ( n / N ) e. RR* ) |
| 209 |
129
|
ltm1d |
|- ( ( ph /\ ch ) -> ( n - 1 ) < n ) |
| 210 |
|
ltdiv1 |
|- ( ( ( n - 1 ) e. RR /\ n e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) |
| 211 |
205 129 139 140 210
|
syl112anc |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) |
| 212 |
209 211
|
mpbid |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) < ( n / N ) ) |
| 213 |
206 130 212
|
ltled |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) <_ ( n / N ) ) |
| 214 |
|
ubicc2 |
|- ( ( ( ( n - 1 ) / N ) e. RR* /\ ( n / N ) e. RR* /\ ( ( n - 1 ) / N ) <_ ( n / N ) ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
| 215 |
207 208 213 214
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
| 216 |
198 119 111
|
syl2anc |
|- ( ( ph /\ ch ) -> n e. ( 1 ... N ) ) |
| 217 |
|
eqid |
|- ( ( ( n - 1 ) / N ) [,] ( n / N ) ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) |
| 218 |
|
simpr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) |
| 219 |
1 2 3 4 5 6 7 8 9 10 11 12 217
|
cvmliftlem7 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` ( n - 1 ) ) ` ( ( n - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n - 1 ) / N ) ) } ) ) |
| 220 |
1 2 3 4 5 6 7 8 9 10 11 12 217 218 219
|
cvmliftlem6 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) |
| 221 |
216 220
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) |
| 222 |
221
|
simpld |
|- ( ( ph /\ ch ) -> ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B ) |
| 223 |
222
|
fdmd |
|- ( ( ph /\ ch ) -> dom ( Q ` n ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
| 224 |
215 223
|
eleqtrrd |
|- ( ( ph /\ ch ) -> ( n / N ) e. dom ( Q ` n ) ) |
| 225 |
|
funssfv |
|- ( ( Fun U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( n / N ) e. dom ( Q ` n ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
| 226 |
197 203 224 225
|
syl3anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
| 227 |
192
|
fveq2d |
|- ( ( ph /\ ch ) -> ( Q ` ( ( n + 1 ) - 1 ) ) = ( Q ` n ) ) |
| 228 |
227 193
|
fveq12d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
| 229 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem9 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) |
| 230 |
119 229
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) |
| 231 |
193
|
fveq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
| 232 |
230 231
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
| 233 |
226 228 232
|
3eqtr2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
| 234 |
233
|
opeq2d |
|- ( ( ph /\ ch ) -> <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. = <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. ) |
| 235 |
234
|
sneqd |
|- ( ( ph /\ ch ) -> { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
| 236 |
182
|
ffnd |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) ) |
| 237 |
|
0xr |
|- 0 e. RR* |
| 238 |
237
|
a1i |
|- ( ( ph /\ ch ) -> 0 e. RR* ) |
| 239 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ 0 <_ ( n / N ) ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) |
| 240 |
238 208 142 239
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) |
| 241 |
|
fnressn |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) /\ ( n / N ) e. ( 0 [,] ( n / N ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) |
| 242 |
236 240 241
|
syl2anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) |
| 243 |
196
|
ffnd |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 244 |
124
|
rexrd |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR* ) |
| 245 |
|
lbicc2 |
|- ( ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 246 |
208 244 147 245
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
| 247 |
|
fnressn |
|- ( ( ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) /\ ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
| 248 |
243 246 247
|
syl2anc |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
| 249 |
235 242 248
|
3eqtr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) |
| 250 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
| 251 |
|
xrmaxle |
|- ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ z e. RR* ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) <_ z <-> ( 0 <_ z /\ ( n / N ) <_ z ) ) ) |
| 252 |
|
xrlemin |
|- ( ( z e. RR* /\ ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) -> ( z <_ if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) <-> ( z <_ ( n / N ) /\ z <_ ( ( n + 1 ) / N ) ) ) ) |
| 253 |
250 251 252
|
ixxin |
|- ( ( ( 0 e. RR* /\ ( n / N ) e. RR* ) /\ ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) |
| 254 |
238 208 208 244 253
|
syl22anc |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) |
| 255 |
142
|
iftrued |
|- ( ( ph /\ ch ) -> if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) = ( n / N ) ) |
| 256 |
147
|
iftrued |
|- ( ( ph /\ ch ) -> if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) = ( n / N ) ) |
| 257 |
255 256
|
oveq12d |
|- ( ( ph /\ ch ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) = ( ( n / N ) [,] ( n / N ) ) ) |
| 258 |
|
iccid |
|- ( ( n / N ) e. RR* -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) |
| 259 |
208 258
|
syl |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) |
| 260 |
254 257 259
|
3eqtrd |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = { ( n / N ) } ) |
| 261 |
260
|
reseq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) ) |
| 262 |
260
|
reseq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) |
| 263 |
249 261 262
|
3eqtr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 264 |
|
fresaun |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
| 265 |
182 196 263 264
|
syl3anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
| 266 |
|
fzsuc |
|- ( n e. ( ZZ>= ` 1 ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
| 267 |
198 266
|
syl |
|- ( ( ph /\ ch ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
| 268 |
267
|
iuneq1d |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) = U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) ) |
| 269 |
|
iunxun |
|- U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) |
| 270 |
|
ovex |
|- ( n + 1 ) e. _V |
| 271 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( Q ` k ) = ( Q ` ( n + 1 ) ) ) |
| 272 |
270 271
|
iunxsn |
|- U_ k e. { ( n + 1 ) } ( Q ` k ) = ( Q ` ( n + 1 ) ) |
| 273 |
272
|
uneq2i |
|- ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |
| 274 |
269 273
|
eqtri |
|- U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |
| 275 |
268 274
|
eqtr2di |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) |
| 276 |
275
|
feq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) ) |
| 277 |
265 276
|
mpbid |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
| 278 |
170
|
feq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) ) |
| 279 |
277 278
|
mpbid |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) |
| 280 |
275
|
reseq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) ) |
| 281 |
|
fresaunres1 |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 282 |
182 196 263 281
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 283 |
280 282
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
| 284 |
167
|
a1i |
|- ( ( ph /\ ch ) -> L e. Top ) |
| 285 |
|
ovex |
|- ( 0 [,] ( ( n + 1 ) / N ) ) e. _V |
| 286 |
285
|
a1i |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) |
| 287 |
|
restabs |
|- ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
| 288 |
284 153 286 287
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
| 289 |
288
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
| 290 |
173 283 289
|
3eltr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
| 291 |
1 2 3 4 5 6 7 8 9 10 11 12 183
|
cvmliftlem8 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 292 |
119 291
|
syldan |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 293 |
194
|
oveq2d |
|- ( ( ph /\ ch ) -> ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 294 |
293
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 295 |
292 294
|
eleqtrd |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 296 |
275
|
reseq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 297 |
|
fresaunres2 |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
| 298 |
182 196 263 297
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
| 299 |
296 298
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
| 300 |
|
restabs |
|- ( ( L e. Top /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 301 |
284 163 286 300
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 302 |
301
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 303 |
295 299 302
|
3eltr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 304 |
115 2 158 165 170 279 290 303
|
paste |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
| 305 |
152
|
reseq2d |
|- ( ( ph /\ ch ) -> ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 306 |
172
|
simprd |
|- ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) |
| 307 |
187
|
simprd |
|- ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 308 |
194
|
reseq2d |
|- ( ( ph /\ ch ) -> ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 309 |
307 308
|
eqtrd |
|- ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 310 |
306 309
|
uneq12d |
|- ( ( ph /\ ch ) -> ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 311 |
|
coundi |
|- ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) |
| 312 |
|
resundi |
|- ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
| 313 |
310 311 312
|
3eqtr4g |
|- ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 314 |
275
|
coeq2d |
|- ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) |
| 315 |
305 313 314
|
3eqtr2rd |
|- ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
| 316 |
304 315
|
jca |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 317 |
14 316
|
sylan2br |
|- ( ( ph /\ ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
| 318 |
317
|
expr |
|- ( ( ph /\ ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) |
| 319 |
114 318
|
animpimp2impd |
|- ( n e. NN -> ( ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) |
| 320 |
40 54 68 83 107 319
|
nnind |
|- ( N e. NN -> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) |
| 321 |
8 320
|
mpcom |
|- ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) |
| 322 |
18 321
|
mpd |
|- ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |