Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
cvmliftlem.k |
|- K = U_ k e. ( 1 ... N ) ( Q ` k ) |
14 |
|
cvmliftlem10.1 |
|- ( ch <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
8 15
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
17 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` 1 ) -> N e. ( 1 ... N ) ) |
18 |
16 17
|
syl |
|- ( ph -> N e. ( 1 ... N ) ) |
19 |
|
eleq1 |
|- ( y = 1 -> ( y e. ( 1 ... N ) <-> 1 e. ( 1 ... N ) ) ) |
20 |
|
oveq2 |
|- ( y = 1 -> ( 1 ... y ) = ( 1 ... 1 ) ) |
21 |
|
1z |
|- 1 e. ZZ |
22 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
23 |
21 22
|
ax-mp |
|- ( 1 ... 1 ) = { 1 } |
24 |
20 23
|
eqtrdi |
|- ( y = 1 -> ( 1 ... y ) = { 1 } ) |
25 |
24
|
iuneq1d |
|- ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. { 1 } ( Q ` k ) ) |
26 |
|
1ex |
|- 1 e. _V |
27 |
|
fveq2 |
|- ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) ) |
28 |
26 27
|
iunxsn |
|- U_ k e. { 1 } ( Q ` k ) = ( Q ` 1 ) |
29 |
25 28
|
eqtrdi |
|- ( y = 1 -> U_ k e. ( 1 ... y ) ( Q ` k ) = ( Q ` 1 ) ) |
30 |
|
oveq1 |
|- ( y = 1 -> ( y / N ) = ( 1 / N ) ) |
31 |
30
|
oveq2d |
|- ( y = 1 -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( 1 / N ) ) ) |
32 |
31
|
oveq2d |
|- ( y = 1 -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) |
33 |
32
|
oveq1d |
|- ( y = 1 -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
34 |
29 33
|
eleq12d |
|- ( y = 1 -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) ) |
35 |
29
|
coeq2d |
|- ( y = 1 -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. ( Q ` 1 ) ) ) |
36 |
31
|
reseq2d |
|- ( y = 1 -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
37 |
35 36
|
eqeq12d |
|- ( y = 1 -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) |
38 |
34 37
|
anbi12d |
|- ( y = 1 -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) |
39 |
19 38
|
imbi12d |
|- ( y = 1 -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) |
40 |
39
|
imbi2d |
|- ( y = 1 -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) ) ) |
41 |
|
eleq1 |
|- ( y = n -> ( y e. ( 1 ... N ) <-> n e. ( 1 ... N ) ) ) |
42 |
|
oveq2 |
|- ( y = n -> ( 1 ... y ) = ( 1 ... n ) ) |
43 |
42
|
iuneq1d |
|- ( y = n -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
44 |
|
oveq1 |
|- ( y = n -> ( y / N ) = ( n / N ) ) |
45 |
44
|
oveq2d |
|- ( y = n -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( n / N ) ) ) |
46 |
45
|
oveq2d |
|- ( y = n -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
47 |
46
|
oveq1d |
|- ( y = n -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
48 |
43 47
|
eleq12d |
|- ( y = n -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) ) |
49 |
43
|
coeq2d |
|- ( y = n -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) ) |
50 |
45
|
reseq2d |
|- ( y = n -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) |
51 |
49 50
|
eqeq12d |
|- ( y = n -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
52 |
48 51
|
anbi12d |
|- ( y = n -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) |
53 |
41 52
|
imbi12d |
|- ( y = n -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) |
54 |
53
|
imbi2d |
|- ( y = n -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) ) |
55 |
|
eleq1 |
|- ( y = ( n + 1 ) -> ( y e. ( 1 ... N ) <-> ( n + 1 ) e. ( 1 ... N ) ) ) |
56 |
|
oveq2 |
|- ( y = ( n + 1 ) -> ( 1 ... y ) = ( 1 ... ( n + 1 ) ) ) |
57 |
56
|
iuneq1d |
|- ( y = ( n + 1 ) -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) |
58 |
|
oveq1 |
|- ( y = ( n + 1 ) -> ( y / N ) = ( ( n + 1 ) / N ) ) |
59 |
58
|
oveq2d |
|- ( y = ( n + 1 ) -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( ( n + 1 ) / N ) ) ) |
60 |
59
|
oveq2d |
|- ( y = ( n + 1 ) -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
61 |
60
|
oveq1d |
|- ( y = ( n + 1 ) -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
62 |
57 61
|
eleq12d |
|- ( y = ( n + 1 ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) ) |
63 |
57
|
coeq2d |
|- ( y = ( n + 1 ) -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) |
64 |
59
|
reseq2d |
|- ( y = ( n + 1 ) -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
65 |
63 64
|
eqeq12d |
|- ( y = ( n + 1 ) -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
66 |
62 65
|
anbi12d |
|- ( y = ( n + 1 ) -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) |
67 |
55 66
|
imbi12d |
|- ( y = ( n + 1 ) -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) |
68 |
67
|
imbi2d |
|- ( y = ( n + 1 ) -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) |
69 |
|
eleq1 |
|- ( y = N -> ( y e. ( 1 ... N ) <-> N e. ( 1 ... N ) ) ) |
70 |
|
oveq2 |
|- ( y = N -> ( 1 ... y ) = ( 1 ... N ) ) |
71 |
70
|
iuneq1d |
|- ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = U_ k e. ( 1 ... N ) ( Q ` k ) ) |
72 |
71 13
|
eqtr4di |
|- ( y = N -> U_ k e. ( 1 ... y ) ( Q ` k ) = K ) |
73 |
|
oveq1 |
|- ( y = N -> ( y / N ) = ( N / N ) ) |
74 |
73
|
oveq2d |
|- ( y = N -> ( 0 [,] ( y / N ) ) = ( 0 [,] ( N / N ) ) ) |
75 |
74
|
oveq2d |
|- ( y = N -> ( L |`t ( 0 [,] ( y / N ) ) ) = ( L |`t ( 0 [,] ( N / N ) ) ) ) |
76 |
75
|
oveq1d |
|- ( y = N -> ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) |
77 |
72 76
|
eleq12d |
|- ( y = N -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) <-> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) ) |
78 |
72
|
coeq2d |
|- ( y = N -> ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( F o. K ) ) |
79 |
74
|
reseq2d |
|- ( y = N -> ( G |` ( 0 [,] ( y / N ) ) ) = ( G |` ( 0 [,] ( N / N ) ) ) ) |
80 |
78 79
|
eqeq12d |
|- ( y = N -> ( ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) <-> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |
81 |
77 80
|
anbi12d |
|- ( y = N -> ( ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) <-> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) |
82 |
69 81
|
imbi12d |
|- ( y = N -> ( ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) <-> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) |
83 |
82
|
imbi2d |
|- ( y = N -> ( ( ph -> ( y e. ( 1 ... N ) -> ( U_ k e. ( 1 ... y ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( y / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... y ) ( Q ` k ) ) = ( G |` ( 0 [,] ( y / N ) ) ) ) ) ) <-> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) ) |
84 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
85 |
16 84
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
86 |
|
eqid |
|- ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) |
87 |
1 2 3 4 5 6 7 8 9 10 11 12 86
|
cvmliftlem8 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) |
88 |
85 87
|
mpdan |
|- ( ph -> ( Q ` 1 ) e. ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) ) |
89 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
90 |
89
|
oveq1i |
|- ( ( 1 - 1 ) / N ) = ( 0 / N ) |
91 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
92 |
8
|
nnne0d |
|- ( ph -> N =/= 0 ) |
93 |
91 92
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
94 |
90 93
|
syl5eq |
|- ( ph -> ( ( 1 - 1 ) / N ) = 0 ) |
95 |
94
|
oveq1d |
|- ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) ) |
96 |
95
|
oveq2d |
|- ( ph -> ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( L |`t ( 0 [,] ( 1 / N ) ) ) ) |
97 |
96
|
oveq1d |
|- ( ph -> ( ( L |`t ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
98 |
88 97
|
eleqtrd |
|- ( ph -> ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) ) |
99 |
|
simpr |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
100 |
1 2 3 4 5 6 7 8 9 10 11 12 86
|
cvmliftlem7 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) ) |
101 |
1 2 3 4 5 6 7 8 9 10 11 12 86 99 100
|
cvmliftlem6 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
102 |
85 101
|
mpdan |
|- ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
103 |
102
|
simprd |
|- ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) |
104 |
95
|
reseq2d |
|- ( ph -> ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
105 |
103 104
|
eqtrd |
|- ( ph -> ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) |
106 |
98 105
|
jca |
|- ( ph -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) |
107 |
106
|
a1d |
|- ( ph -> ( 1 e. ( 1 ... N ) -> ( ( Q ` 1 ) e. ( ( L |`t ( 0 [,] ( 1 / N ) ) ) Cn C ) /\ ( F o. ( Q ` 1 ) ) = ( G |` ( 0 [,] ( 1 / N ) ) ) ) ) ) |
108 |
|
elnnuz |
|- ( n e. NN <-> n e. ( ZZ>= ` 1 ) ) |
109 |
108
|
biimpi |
|- ( n e. NN -> n e. ( ZZ>= ` 1 ) ) |
110 |
109
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
111 |
|
peano2fzr |
|- ( ( n e. ( ZZ>= ` 1 ) /\ ( n + 1 ) e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) |
112 |
111
|
ex |
|- ( n e. ( ZZ>= ` 1 ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) |
113 |
110 112
|
syl |
|- ( ( ph /\ n e. NN ) -> ( ( n + 1 ) e. ( 1 ... N ) -> n e. ( 1 ... N ) ) ) |
114 |
113
|
imim1d |
|- ( ( ph /\ n e. NN ) -> ( ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) ) |
115 |
|
eqid |
|- U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |
116 |
|
0re |
|- 0 e. RR |
117 |
14
|
simplbi |
|- ( ch -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) |
118 |
117
|
adantl |
|- ( ( ph /\ ch ) -> ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) |
119 |
118
|
simprd |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. ( 1 ... N ) ) |
120 |
|
elfznn |
|- ( ( n + 1 ) e. ( 1 ... N ) -> ( n + 1 ) e. NN ) |
121 |
119 120
|
syl |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. NN ) |
122 |
121
|
nnred |
|- ( ( ph /\ ch ) -> ( n + 1 ) e. RR ) |
123 |
8
|
adantr |
|- ( ( ph /\ ch ) -> N e. NN ) |
124 |
122 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR ) |
125 |
|
iccssre |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) |
126 |
116 124 125
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) |
127 |
117
|
simpld |
|- ( ch -> n e. NN ) |
128 |
127
|
adantl |
|- ( ( ph /\ ch ) -> n e. NN ) |
129 |
128
|
nnred |
|- ( ( ph /\ ch ) -> n e. RR ) |
130 |
129 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( n / N ) e. RR ) |
131 |
|
icccld |
|- ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
132 |
116 130 131
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
133 |
11
|
fveq2i |
|- ( Clsd ` L ) = ( Clsd ` ( topGen ` ran (,) ) ) |
134 |
132 133
|
eleqtrrdi |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) ) |
135 |
|
ssun1 |
|- ( 0 [,] ( n / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
136 |
116
|
a1i |
|- ( ( ph /\ ch ) -> 0 e. RR ) |
137 |
128
|
nnnn0d |
|- ( ( ph /\ ch ) -> n e. NN0 ) |
138 |
137
|
nn0ge0d |
|- ( ( ph /\ ch ) -> 0 <_ n ) |
139 |
123
|
nnred |
|- ( ( ph /\ ch ) -> N e. RR ) |
140 |
123
|
nngt0d |
|- ( ( ph /\ ch ) -> 0 < N ) |
141 |
|
divge0 |
|- ( ( ( n e. RR /\ 0 <_ n ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( n / N ) ) |
142 |
129 138 139 140 141
|
syl22anc |
|- ( ( ph /\ ch ) -> 0 <_ ( n / N ) ) |
143 |
129
|
ltp1d |
|- ( ( ph /\ ch ) -> n < ( n + 1 ) ) |
144 |
|
ltdiv1 |
|- ( ( n e. RR /\ ( n + 1 ) e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
145 |
129 122 139 140 144
|
syl112anc |
|- ( ( ph /\ ch ) -> ( n < ( n + 1 ) <-> ( n / N ) < ( ( n + 1 ) / N ) ) ) |
146 |
143 145
|
mpbid |
|- ( ( ph /\ ch ) -> ( n / N ) < ( ( n + 1 ) / N ) ) |
147 |
130 124 146
|
ltled |
|- ( ( ph /\ ch ) -> ( n / N ) <_ ( ( n + 1 ) / N ) ) |
148 |
|
elicc2 |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) |
149 |
116 124 148
|
sylancr |
|- ( ( ph /\ ch ) -> ( ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) <-> ( ( n / N ) e. RR /\ 0 <_ ( n / N ) /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) ) ) |
150 |
130 142 147 149
|
mpbir3and |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) |
151 |
|
iccsplit |
|- ( ( 0 e. RR /\ ( ( n + 1 ) / N ) e. RR /\ ( n / N ) e. ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
152 |
136 124 150 151
|
syl3anc |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
153 |
135 152
|
sseqtrrid |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) |
154 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
155 |
11
|
unieqi |
|- U. L = U. ( topGen ` ran (,) ) |
156 |
154 155
|
eqtr4i |
|- RR = U. L |
157 |
156
|
restcldi |
|- ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( 0 [,] ( n / N ) ) e. ( Clsd ` L ) /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
158 |
126 134 153 157
|
syl3anc |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
159 |
|
icccld |
|- ( ( ( n / N ) e. RR /\ ( ( n + 1 ) / N ) e. RR ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
160 |
130 124 159
|
syl2anc |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
161 |
160 133
|
eleqtrrdi |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) ) |
162 |
|
ssun2 |
|- ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
163 |
162 152
|
sseqtrrid |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) |
164 |
156
|
restcldi |
|- ( ( ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` L ) /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
165 |
126 161 163 164
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( ( n + 1 ) / N ) ) e. ( Clsd ` ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
166 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
167 |
11 166
|
eqeltri |
|- L e. Top |
168 |
156
|
restuni |
|- ( ( L e. Top /\ ( 0 [,] ( ( n + 1 ) / N ) ) C_ RR ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
169 |
167 126 168
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
170 |
152 169
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
171 |
14
|
simprbi |
|- ( ch -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
172 |
171
|
adantl |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) |
173 |
172
|
simpld |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
174 |
|
eqid |
|- U. ( L |`t ( 0 [,] ( n / N ) ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) |
175 |
174 2
|
cnf |
|- ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) |
176 |
173 175
|
syl |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) |
177 |
|
iccssre |
|- ( ( 0 e. RR /\ ( n / N ) e. RR ) -> ( 0 [,] ( n / N ) ) C_ RR ) |
178 |
116 130 177
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) C_ RR ) |
179 |
156
|
restuni |
|- ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ RR ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) |
180 |
167 178 179
|
sylancr |
|- ( ( ph /\ ch ) -> ( 0 [,] ( n / N ) ) = U. ( L |`t ( 0 [,] ( n / N ) ) ) ) |
181 |
180
|
feq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B <-> U_ k e. ( 1 ... n ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( n / N ) ) ) --> B ) ) |
182 |
176 181
|
mpbird |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B ) |
183 |
|
eqid |
|- ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) |
184 |
|
simpr |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( n + 1 ) e. ( 1 ... N ) ) |
185 |
1 2 3 4 5 6 7 8 9 10 11 12 183
|
cvmliftlem7 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( ( n + 1 ) - 1 ) / N ) ) } ) ) |
186 |
1 2 3 4 5 6 7 8 9 10 11 12 183 184 185
|
cvmliftlem6 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
187 |
119 186
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
188 |
187
|
simpld |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
189 |
128
|
nncnd |
|- ( ( ph /\ ch ) -> n e. CC ) |
190 |
|
ax-1cn |
|- 1 e. CC |
191 |
|
pncan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n + 1 ) - 1 ) = n ) |
192 |
189 190 191
|
sylancl |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) - 1 ) = n ) |
193 |
192
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( n + 1 ) - 1 ) / N ) = ( n / N ) ) |
194 |
193
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) = ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
195 |
194
|
feq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) : ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) --> B <-> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) ) |
196 |
188 195
|
mpbid |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B ) |
197 |
176
|
ffund |
|- ( ( ph /\ ch ) -> Fun U_ k e. ( 1 ... n ) ( Q ` k ) ) |
198 |
128 109
|
syl |
|- ( ( ph /\ ch ) -> n e. ( ZZ>= ` 1 ) ) |
199 |
|
eluzfz2 |
|- ( n e. ( ZZ>= ` 1 ) -> n e. ( 1 ... n ) ) |
200 |
198 199
|
syl |
|- ( ( ph /\ ch ) -> n e. ( 1 ... n ) ) |
201 |
|
fveq2 |
|- ( k = n -> ( Q ` k ) = ( Q ` n ) ) |
202 |
201
|
ssiun2s |
|- ( n e. ( 1 ... n ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) |
203 |
200 202
|
syl |
|- ( ( ph /\ ch ) -> ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) ) |
204 |
|
peano2rem |
|- ( n e. RR -> ( n - 1 ) e. RR ) |
205 |
129 204
|
syl |
|- ( ( ph /\ ch ) -> ( n - 1 ) e. RR ) |
206 |
205 123
|
nndivred |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR ) |
207 |
206
|
rexrd |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) e. RR* ) |
208 |
130
|
rexrd |
|- ( ( ph /\ ch ) -> ( n / N ) e. RR* ) |
209 |
129
|
ltm1d |
|- ( ( ph /\ ch ) -> ( n - 1 ) < n ) |
210 |
|
ltdiv1 |
|- ( ( ( n - 1 ) e. RR /\ n e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) |
211 |
205 129 139 140 210
|
syl112anc |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) < n <-> ( ( n - 1 ) / N ) < ( n / N ) ) ) |
212 |
209 211
|
mpbid |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) < ( n / N ) ) |
213 |
206 130 212
|
ltled |
|- ( ( ph /\ ch ) -> ( ( n - 1 ) / N ) <_ ( n / N ) ) |
214 |
|
ubicc2 |
|- ( ( ( ( n - 1 ) / N ) e. RR* /\ ( n / N ) e. RR* /\ ( ( n - 1 ) / N ) <_ ( n / N ) ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
215 |
207 208 213 214
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
216 |
198 119 111
|
syl2anc |
|- ( ( ph /\ ch ) -> n e. ( 1 ... N ) ) |
217 |
|
eqid |
|- ( ( ( n - 1 ) / N ) [,] ( n / N ) ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) |
218 |
|
simpr |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> n e. ( 1 ... N ) ) |
219 |
1 2 3 4 5 6 7 8 9 10 11 12 217
|
cvmliftlem7 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` ( n - 1 ) ) ` ( ( n - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( n - 1 ) / N ) ) } ) ) |
220 |
1 2 3 4 5 6 7 8 9 10 11 12 217 218 219
|
cvmliftlem6 |
|- ( ( ph /\ n e. ( 1 ... N ) ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) |
221 |
216 220
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B /\ ( F o. ( Q ` n ) ) = ( G |` ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) ) ) |
222 |
221
|
simpld |
|- ( ( ph /\ ch ) -> ( Q ` n ) : ( ( ( n - 1 ) / N ) [,] ( n / N ) ) --> B ) |
223 |
222
|
fdmd |
|- ( ( ph /\ ch ) -> dom ( Q ` n ) = ( ( ( n - 1 ) / N ) [,] ( n / N ) ) ) |
224 |
215 223
|
eleqtrrd |
|- ( ( ph /\ ch ) -> ( n / N ) e. dom ( Q ` n ) ) |
225 |
|
funssfv |
|- ( ( Fun U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( Q ` n ) C_ U_ k e. ( 1 ... n ) ( Q ` k ) /\ ( n / N ) e. dom ( Q ` n ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
226 |
197 203 224 225
|
syl3anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
227 |
192
|
fveq2d |
|- ( ( ph /\ ch ) -> ( Q ` ( ( n + 1 ) - 1 ) ) = ( Q ` n ) ) |
228 |
227 193
|
fveq12d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` n ) ` ( n / N ) ) ) |
229 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem9 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) |
230 |
119 229
|
syldan |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) ) |
231 |
193
|
fveq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
232 |
230 231
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( ( n + 1 ) - 1 ) ) ` ( ( ( n + 1 ) - 1 ) / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
233 |
226 228 232
|
3eqtr2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) = ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) ) |
234 |
233
|
opeq2d |
|- ( ( ph /\ ch ) -> <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. = <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. ) |
235 |
234
|
sneqd |
|- ( ( ph /\ ch ) -> { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
236 |
182
|
ffnd |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) ) |
237 |
|
0xr |
|- 0 e. RR* |
238 |
237
|
a1i |
|- ( ( ph /\ ch ) -> 0 e. RR* ) |
239 |
|
ubicc2 |
|- ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ 0 <_ ( n / N ) ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) |
240 |
238 208 142 239
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( 0 [,] ( n / N ) ) ) |
241 |
|
fnressn |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) Fn ( 0 [,] ( n / N ) ) /\ ( n / N ) e. ( 0 [,] ( n / N ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) |
242 |
236 240 241
|
syl2anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = { <. ( n / N ) , ( U_ k e. ( 1 ... n ) ( Q ` k ) ` ( n / N ) ) >. } ) |
243 |
196
|
ffnd |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
244 |
124
|
rexrd |
|- ( ( ph /\ ch ) -> ( ( n + 1 ) / N ) e. RR* ) |
245 |
|
lbicc2 |
|- ( ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* /\ ( n / N ) <_ ( ( n + 1 ) / N ) ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
246 |
208 244 147 245
|
syl3anc |
|- ( ( ph /\ ch ) -> ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) |
247 |
|
fnressn |
|- ( ( ( Q ` ( n + 1 ) ) Fn ( ( n / N ) [,] ( ( n + 1 ) / N ) ) /\ ( n / N ) e. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
248 |
243 246 247
|
syl2anc |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) = { <. ( n / N ) , ( ( Q ` ( n + 1 ) ) ` ( n / N ) ) >. } ) |
249 |
235 242 248
|
3eqtr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) |
250 |
|
df-icc |
|- [,] = ( x e. RR* , y e. RR* |-> { z e. RR* | ( x <_ z /\ z <_ y ) } ) |
251 |
|
xrmaxle |
|- ( ( 0 e. RR* /\ ( n / N ) e. RR* /\ z e. RR* ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) <_ z <-> ( 0 <_ z /\ ( n / N ) <_ z ) ) ) |
252 |
|
xrlemin |
|- ( ( z e. RR* /\ ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) -> ( z <_ if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) <-> ( z <_ ( n / N ) /\ z <_ ( ( n + 1 ) / N ) ) ) ) |
253 |
250 251 252
|
ixxin |
|- ( ( ( 0 e. RR* /\ ( n / N ) e. RR* ) /\ ( ( n / N ) e. RR* /\ ( ( n + 1 ) / N ) e. RR* ) ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) |
254 |
238 208 208 244 253
|
syl22anc |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) ) |
255 |
142
|
iftrued |
|- ( ( ph /\ ch ) -> if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) = ( n / N ) ) |
256 |
147
|
iftrued |
|- ( ( ph /\ ch ) -> if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) = ( n / N ) ) |
257 |
255 256
|
oveq12d |
|- ( ( ph /\ ch ) -> ( if ( 0 <_ ( n / N ) , ( n / N ) , 0 ) [,] if ( ( n / N ) <_ ( ( n + 1 ) / N ) , ( n / N ) , ( ( n + 1 ) / N ) ) ) = ( ( n / N ) [,] ( n / N ) ) ) |
258 |
|
iccid |
|- ( ( n / N ) e. RR* -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) |
259 |
208 258
|
syl |
|- ( ( ph /\ ch ) -> ( ( n / N ) [,] ( n / N ) ) = { ( n / N ) } ) |
260 |
254 257 259
|
3eqtrd |
|- ( ( ph /\ ch ) -> ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = { ( n / N ) } ) |
261 |
260
|
reseq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) |` { ( n / N ) } ) ) |
262 |
260
|
reseq2d |
|- ( ( ph /\ ch ) -> ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` { ( n / N ) } ) ) |
263 |
249 261 262
|
3eqtr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
264 |
|
fresaun |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
265 |
182 196 263 264
|
syl3anc |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
266 |
|
fzsuc |
|- ( n e. ( ZZ>= ` 1 ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
267 |
198 266
|
syl |
|- ( ( ph /\ ch ) -> ( 1 ... ( n + 1 ) ) = ( ( 1 ... n ) u. { ( n + 1 ) } ) ) |
268 |
267
|
iuneq1d |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) = U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) ) |
269 |
|
iunxun |
|- U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) |
270 |
|
ovex |
|- ( n + 1 ) e. _V |
271 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( Q ` k ) = ( Q ` ( n + 1 ) ) ) |
272 |
270 271
|
iunxsn |
|- U_ k e. { ( n + 1 ) } ( Q ` k ) = ( Q ` ( n + 1 ) ) |
273 |
272
|
uneq2i |
|- ( U_ k e. ( 1 ... n ) ( Q ` k ) u. U_ k e. { ( n + 1 ) } ( Q ` k ) ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |
274 |
269 273
|
eqtri |
|- U_ k e. ( ( 1 ... n ) u. { ( n + 1 ) } ) ( Q ` k ) = ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |
275 |
268 274
|
eqtr2di |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) = U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) |
276 |
275
|
feq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) ) |
277 |
265 276
|
mpbid |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B ) |
278 |
170
|
feq2d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) --> B <-> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) ) |
279 |
277 278
|
mpbid |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) : U. ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) --> B ) |
280 |
275
|
reseq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) ) |
281 |
|
fresaunres1 |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
282 |
182 196 263 281
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
283 |
280 282
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) = U_ k e. ( 1 ... n ) ( Q ` k ) ) |
284 |
167
|
a1i |
|- ( ( ph /\ ch ) -> L e. Top ) |
285 |
|
ovex |
|- ( 0 [,] ( ( n + 1 ) / N ) ) e. _V |
286 |
285
|
a1i |
|- ( ( ph /\ ch ) -> ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) |
287 |
|
restabs |
|- ( ( L e. Top /\ ( 0 [,] ( n / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
288 |
284 153 286 287
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) = ( L |`t ( 0 [,] ( n / N ) ) ) ) |
289 |
288
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) = ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
290 |
173 283 289
|
3eltr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( 0 [,] ( n / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( 0 [,] ( n / N ) ) ) Cn C ) ) |
291 |
1 2 3 4 5 6 7 8 9 10 11 12 183
|
cvmliftlem8 |
|- ( ( ph /\ ( n + 1 ) e. ( 1 ... N ) ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
292 |
119 291
|
syldan |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
293 |
194
|
oveq2d |
|- ( ( ph /\ ch ) -> ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
294 |
293
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( L |`t ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
295 |
292 294
|
eleqtrd |
|- ( ( ph /\ ch ) -> ( Q ` ( n + 1 ) ) e. ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
296 |
275
|
reseq1d |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
297 |
|
fresaunres2 |
|- ( ( U_ k e. ( 1 ... n ) ( Q ` k ) : ( 0 [,] ( n / N ) ) --> B /\ ( Q ` ( n + 1 ) ) : ( ( n / N ) [,] ( ( n + 1 ) / N ) ) --> B /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( Q ` ( n + 1 ) ) |` ( ( 0 [,] ( n / N ) ) i^i ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
298 |
182 196 263 297
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
299 |
296 298
|
eqtr3d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( Q ` ( n + 1 ) ) ) |
300 |
|
restabs |
|- ( ( L e. Top /\ ( ( n / N ) [,] ( ( n + 1 ) / N ) ) C_ ( 0 [,] ( ( n + 1 ) / N ) ) /\ ( 0 [,] ( ( n + 1 ) / N ) ) e. _V ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
301 |
284 163 286 300
|
syl3anc |
|- ( ( ph /\ ch ) -> ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) = ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
302 |
301
|
oveq1d |
|- ( ( ph /\ ch ) -> ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) = ( ( L |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
303 |
295 299 302
|
3eltr4d |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) e. ( ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) |`t ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
304 |
115 2 158 165 170 279 290 303
|
paste |
|- ( ( ph /\ ch ) -> U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) ) |
305 |
152
|
reseq2d |
|- ( ( ph /\ ch ) -> ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
306 |
172
|
simprd |
|- ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) |
307 |
187
|
simprd |
|- ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
308 |
194
|
reseq2d |
|- ( ( ph /\ ch ) -> ( G |` ( ( ( ( n + 1 ) - 1 ) / N ) [,] ( ( n + 1 ) / N ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
309 |
307 308
|
eqtrd |
|- ( ( ph /\ ch ) -> ( F o. ( Q ` ( n + 1 ) ) ) = ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
310 |
306 309
|
uneq12d |
|- ( ( ph /\ ch ) -> ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
311 |
|
coundi |
|- ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) u. ( F o. ( Q ` ( n + 1 ) ) ) ) |
312 |
|
resundi |
|- ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) = ( ( G |` ( 0 [,] ( n / N ) ) ) u. ( G |` ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) |
313 |
310 311 312
|
3eqtr4g |
|- ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( G |` ( ( 0 [,] ( n / N ) ) u. ( ( n / N ) [,] ( ( n + 1 ) / N ) ) ) ) ) |
314 |
275
|
coeq2d |
|- ( ( ph /\ ch ) -> ( F o. ( U_ k e. ( 1 ... n ) ( Q ` k ) u. ( Q ` ( n + 1 ) ) ) ) = ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) ) |
315 |
305 313 314
|
3eqtr2rd |
|- ( ( ph /\ ch ) -> ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) |
316 |
304 315
|
jca |
|- ( ( ph /\ ch ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
317 |
14 316
|
sylan2br |
|- ( ( ph /\ ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) |
318 |
317
|
expr |
|- ( ( ph /\ ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) ) -> ( ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) |
319 |
114 318
|
animpimp2impd |
|- ( n e. NN -> ( ( ph -> ( n e. ( 1 ... N ) -> ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) -> ( ph -> ( ( n + 1 ) e. ( 1 ... N ) -> ( U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( ( n + 1 ) / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... ( n + 1 ) ) ( Q ` k ) ) = ( G |` ( 0 [,] ( ( n + 1 ) / N ) ) ) ) ) ) ) ) |
320 |
40 54 68 83 107 319
|
nnind |
|- ( N e. NN -> ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) ) |
321 |
8 320
|
mpcom |
|- ( ph -> ( N e. ( 1 ... N ) -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) ) |
322 |
18 321
|
mpd |
|- ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |