| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> F : A --> C ) |
| 2 |
|
inss1 |
|- ( A i^i B ) C_ A |
| 3 |
|
fssres |
|- ( ( F : A --> C /\ ( A i^i B ) C_ A ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> C ) |
| 4 |
1 2 3
|
sylancl |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) : ( A i^i B ) --> C ) |
| 5 |
|
difss |
|- ( A \ B ) C_ A |
| 6 |
|
fssres |
|- ( ( F : A --> C /\ ( A \ B ) C_ A ) -> ( F |` ( A \ B ) ) : ( A \ B ) --> C ) |
| 7 |
1 5 6
|
sylancl |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A \ B ) ) : ( A \ B ) --> C ) |
| 8 |
|
simp2 |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> G : B --> C ) |
| 9 |
|
difss |
|- ( B \ A ) C_ B |
| 10 |
|
fssres |
|- ( ( G : B --> C /\ ( B \ A ) C_ B ) -> ( G |` ( B \ A ) ) : ( B \ A ) --> C ) |
| 11 |
8 9 10
|
sylancl |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( G |` ( B \ A ) ) : ( B \ A ) --> C ) |
| 12 |
|
indifdir |
|- ( ( A \ B ) i^i ( B \ A ) ) = ( ( A i^i ( B \ A ) ) \ ( B i^i ( B \ A ) ) ) |
| 13 |
|
disjdif |
|- ( A i^i ( B \ A ) ) = (/) |
| 14 |
13
|
difeq1i |
|- ( ( A i^i ( B \ A ) ) \ ( B i^i ( B \ A ) ) ) = ( (/) \ ( B i^i ( B \ A ) ) ) |
| 15 |
|
0dif |
|- ( (/) \ ( B i^i ( B \ A ) ) ) = (/) |
| 16 |
12 14 15
|
3eqtri |
|- ( ( A \ B ) i^i ( B \ A ) ) = (/) |
| 17 |
16
|
a1i |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( A \ B ) i^i ( B \ A ) ) = (/) ) |
| 18 |
7 11 17
|
fun2d |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) : ( ( A \ B ) u. ( B \ A ) ) --> C ) |
| 19 |
|
indi |
|- ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = ( ( ( A i^i B ) i^i ( A \ B ) ) u. ( ( A i^i B ) i^i ( B \ A ) ) ) |
| 20 |
|
inass |
|- ( ( A i^i B ) i^i ( A \ B ) ) = ( A i^i ( B i^i ( A \ B ) ) ) |
| 21 |
|
disjdif |
|- ( B i^i ( A \ B ) ) = (/) |
| 22 |
21
|
ineq2i |
|- ( A i^i ( B i^i ( A \ B ) ) ) = ( A i^i (/) ) |
| 23 |
|
in0 |
|- ( A i^i (/) ) = (/) |
| 24 |
20 22 23
|
3eqtri |
|- ( ( A i^i B ) i^i ( A \ B ) ) = (/) |
| 25 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 26 |
25
|
ineq1i |
|- ( ( A i^i B ) i^i ( B \ A ) ) = ( ( B i^i A ) i^i ( B \ A ) ) |
| 27 |
|
inass |
|- ( ( B i^i A ) i^i ( B \ A ) ) = ( B i^i ( A i^i ( B \ A ) ) ) |
| 28 |
13
|
ineq2i |
|- ( B i^i ( A i^i ( B \ A ) ) ) = ( B i^i (/) ) |
| 29 |
|
in0 |
|- ( B i^i (/) ) = (/) |
| 30 |
27 28 29
|
3eqtri |
|- ( ( B i^i A ) i^i ( B \ A ) ) = (/) |
| 31 |
26 30
|
eqtri |
|- ( ( A i^i B ) i^i ( B \ A ) ) = (/) |
| 32 |
24 31
|
uneq12i |
|- ( ( ( A i^i B ) i^i ( A \ B ) ) u. ( ( A i^i B ) i^i ( B \ A ) ) ) = ( (/) u. (/) ) |
| 33 |
|
un0 |
|- ( (/) u. (/) ) = (/) |
| 34 |
19 32 33
|
3eqtri |
|- ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = (/) |
| 35 |
34
|
a1i |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( A i^i B ) i^i ( ( A \ B ) u. ( B \ A ) ) ) = (/) ) |
| 36 |
4 18 35
|
fun2d |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C ) |
| 37 |
|
un12 |
|- ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) = ( ( A \ B ) u. ( ( A i^i B ) u. ( B \ A ) ) ) |
| 38 |
25
|
uneq1i |
|- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
| 39 |
|
inundif |
|- ( ( B i^i A ) u. ( B \ A ) ) = B |
| 40 |
38 39
|
eqtri |
|- ( ( A i^i B ) u. ( B \ A ) ) = B |
| 41 |
40
|
uneq2i |
|- ( ( A \ B ) u. ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( A \ B ) u. B ) |
| 42 |
|
undif1 |
|- ( ( A \ B ) u. B ) = ( A u. B ) |
| 43 |
37 41 42
|
3eqtri |
|- ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) = ( A u. B ) |
| 44 |
43
|
feq2i |
|- ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C <-> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( A u. B ) --> C ) |
| 45 |
|
ffn |
|- ( F : A --> C -> F Fn A ) |
| 46 |
|
ffn |
|- ( G : B --> C -> G Fn B ) |
| 47 |
|
id |
|- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
| 48 |
|
resasplit |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 49 |
45 46 47 48
|
syl3an |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
| 50 |
49
|
feq1d |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) : ( A u. B ) --> C <-> ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( A u. B ) --> C ) ) |
| 51 |
44 50
|
bitr4id |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) : ( ( A i^i B ) u. ( ( A \ B ) u. ( B \ A ) ) ) --> C <-> ( F u. G ) : ( A u. B ) --> C ) ) |
| 52 |
36 51
|
mpbid |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) : ( A u. B ) --> C ) |