Metamath Proof Explorer


Theorem fresaun

Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion fresaun F : A C G : B C F A B = G A B F G : A B C

Proof

Step Hyp Ref Expression
1 simp1 F : A C G : B C F A B = G A B F : A C
2 inss1 A B A
3 fssres F : A C A B A F A B : A B C
4 1 2 3 sylancl F : A C G : B C F A B = G A B F A B : A B C
5 difss A B A
6 fssres F : A C A B A F A B : A B C
7 1 5 6 sylancl F : A C G : B C F A B = G A B F A B : A B C
8 simp2 F : A C G : B C F A B = G A B G : B C
9 difss B A B
10 fssres G : B C B A B G B A : B A C
11 8 9 10 sylancl F : A C G : B C F A B = G A B G B A : B A C
12 indifdir A B B A = A B A B B A
13 disjdif A B A =
14 13 difeq1i A B A B B A = B B A
15 0dif B B A =
16 12 14 15 3eqtri A B B A =
17 16 a1i F : A C G : B C F A B = G A B A B B A =
18 7 11 17 fun2d F : A C G : B C F A B = G A B F A B G B A : A B B A C
19 indi A B A B B A = A B A B A B B A
20 inass A B A B = A B A B
21 disjdif B A B =
22 21 ineq2i A B A B = A
23 in0 A =
24 20 22 23 3eqtri A B A B =
25 incom A B = B A
26 25 ineq1i A B B A = B A B A
27 inass B A B A = B A B A
28 13 ineq2i B A B A = B
29 in0 B =
30 27 28 29 3eqtri B A B A =
31 26 30 eqtri A B B A =
32 24 31 uneq12i A B A B A B B A =
33 un0 =
34 19 32 33 3eqtri A B A B B A =
35 34 a1i F : A C G : B C F A B = G A B A B A B B A =
36 4 18 35 fun2d F : A C G : B C F A B = G A B F A B F A B G B A : A B A B B A C
37 un12 A B A B B A = A B A B B A
38 25 uneq1i A B B A = B A B A
39 inundif B A B A = B
40 38 39 eqtri A B B A = B
41 40 uneq2i A B A B B A = A B B
42 undif1 A B B = A B
43 37 41 42 3eqtri A B A B B A = A B
44 43 feq2i F A B F A B G B A : A B A B B A C F A B F A B G B A : A B C
45 ffn F : A C F Fn A
46 ffn G : B C G Fn B
47 id F A B = G A B F A B = G A B
48 resasplit F Fn A G Fn B F A B = G A B F G = F A B F A B G B A
49 45 46 47 48 syl3an F : A C G : B C F A B = G A B F G = F A B F A B G B A
50 49 feq1d F : A C G : B C F A B = G A B F G : A B C F A B F A B G B A : A B C
51 44 50 bitr4id F : A C G : B C F A B = G A B F A B F A B G B A : A B A B B A C F G : A B C
52 36 51 mpbid F : A C G : B C F A B = G A B F G : A B C