Metamath Proof Explorer


Theorem resasplit

Description: If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014)

Ref Expression
Assertion resasplit FFnAGFnBFAB=GABFG=FABFABGBA

Proof

Step Hyp Ref Expression
1 fnresdm FFnAFA=F
2 fnresdm GFnBGB=G
3 uneq12 FA=FGB=GFAGB=FG
4 1 2 3 syl2an FFnAGFnBFAGB=FG
5 4 3adant3 FFnAGFnBFAB=GABFAGB=FG
6 inundif ABAB=A
7 6 reseq2i FABAB=FA
8 resundi FABAB=FABFAB
9 7 8 eqtr3i FA=FABFAB
10 incom AB=BA
11 10 uneq1i ABBA=BABA
12 inundif BABA=B
13 11 12 eqtri ABBA=B
14 13 reseq2i GABBA=GB
15 resundi GABBA=GABGBA
16 14 15 eqtr3i GB=GABGBA
17 9 16 uneq12i FAGB=FABFABGABGBA
18 simp3 FFnAGFnBFAB=GABFAB=GAB
19 18 uneq1d FFnAGFnBFAB=GABFABGBA=GABGBA
20 19 uneq2d FFnAGFnBFAB=GABFABFABFABGBA=FABFABGABGBA
21 17 20 eqtr4id FFnAGFnBFAB=GABFAGB=FABFABFABGBA
22 un4 FABFABFABGBA=FABFABFABGBA
23 21 22 eqtrdi FFnAGFnBFAB=GABFAGB=FABFABFABGBA
24 unidm FABFAB=FAB
25 24 uneq1i FABFABFABGBA=FABFABGBA
26 23 25 eqtrdi FFnAGFnBFAB=GABFAGB=FABFABGBA
27 5 26 eqtr3d FFnAGFnBFAB=GABFG=FABFABGBA