| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | elfznn |  |-  ( M e. ( 1 ... N ) -> M e. NN ) | 
						
							| 14 |  | eqid |  |-  ( ( ( M - 1 ) / N ) [,] ( M / N ) ) = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 14 | cvmliftlem5 |  |-  ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 16 | 13 15 | sylan2 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) = ( z e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> z = ( ( M - 1 ) / N ) ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> ( G ` z ) = ( G ` ( ( M - 1 ) / N ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 20 | 13 | adantl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. NN ) | 
						
							| 21 | 20 | nnred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. RR ) | 
						
							| 22 |  | peano2rem |  |-  ( M e. RR -> ( M - 1 ) e. RR ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. RR ) | 
						
							| 24 | 8 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> N e. NN ) | 
						
							| 25 | 23 24 | nndivred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR ) | 
						
							| 26 | 25 | rexrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR* ) | 
						
							| 27 | 21 24 | nndivred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR ) | 
						
							| 28 | 27 | rexrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR* ) | 
						
							| 29 | 21 | ltm1d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) < M ) | 
						
							| 30 | 24 | nnred |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> N e. RR ) | 
						
							| 31 | 24 | nngt0d |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> 0 < N ) | 
						
							| 32 |  | ltdiv1 |  |-  ( ( ( M - 1 ) e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) | 
						
							| 33 | 23 21 30 31 32 | syl112anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) | 
						
							| 34 | 29 33 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) < ( M / N ) ) | 
						
							| 35 | 25 27 34 | ltled |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) <_ ( M / N ) ) | 
						
							| 36 |  | lbicc2 |  |-  ( ( ( ( M - 1 ) / N ) e. RR* /\ ( M / N ) e. RR* /\ ( ( M - 1 ) / N ) <_ ( M / N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) | 
						
							| 37 | 26 28 35 36 | syl3anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) | 
						
							| 38 |  | fvexd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) e. _V ) | 
						
							| 39 | 16 19 37 38 | fvmptd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` M ) ` ( ( M - 1 ) / N ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 40 | 4 | adantr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> F e. ( C CovMap J ) ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 9 10 11 41 | cvmliftlem1 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 11 12 14 | cvmliftlem7 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) | 
						
							| 44 |  | cvmcn |  |-  ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) | 
						
							| 45 | 2 3 | cnf |  |-  ( F e. ( C Cn J ) -> F : B --> X ) | 
						
							| 46 | 40 44 45 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> F : B --> X ) | 
						
							| 47 |  | ffn |  |-  ( F : B --> X -> F Fn B ) | 
						
							| 48 |  | fniniseg |  |-  ( F Fn B -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) | 
						
							| 49 | 46 47 48 | 3syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) | 
						
							| 50 | 43 49 | mpbid |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 51 | 50 | simpld |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B ) | 
						
							| 52 | 50 | simprd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) | 
						
							| 53 | 1 2 3 4 5 6 7 8 9 10 11 41 14 37 | cvmliftlem3 |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( G ` ( ( M - 1 ) / N ) ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 54 | 52 53 | eqeltrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) | 
						
							| 55 |  | eqid |  |-  ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) | 
						
							| 56 | 1 2 55 | cvmsiota |  |-  ( ( F e. ( C CovMap J ) /\ ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) | 
						
							| 57 | 40 42 51 54 56 | syl13anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) | 
						
							| 58 | 57 | simprd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) | 
						
							| 59 |  | fvres |  |-  ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 60 | 58 59 | syl |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 61 | 60 52 | eqtrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) | 
						
							| 62 | 57 | simpld |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) | 
						
							| 63 | 1 | cvmsf1o |  |-  ( ( F e. ( C CovMap J ) /\ ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) ) | 
						
							| 64 | 40 42 62 63 | syl3anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) ) | 
						
							| 65 |  | f1ocnvfv |  |-  ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) -> ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 66 | 64 58 65 | syl2anc |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) | 
						
							| 67 | 61 66 | mpd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) | 
						
							| 68 | 39 67 | eqtrd |  |-  ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` M ) ` ( ( M - 1 ) / N ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) |