Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
elfznn |
|- ( M e. ( 1 ... N ) -> M e. NN ) |
14 |
|
eqid |
|- ( ( ( M - 1 ) / N ) [,] ( M / N ) ) = ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 14
|
cvmliftlem5 |
|- ( ( ph /\ M e. NN ) -> ( Q ` M ) = ( z e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
16 |
13 15
|
sylan2 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( Q ` M ) = ( z e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) |
17 |
|
simpr |
|- ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> z = ( ( M - 1 ) / N ) ) |
18 |
17
|
fveq2d |
|- ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> ( G ` z ) = ( G ` ( ( M - 1 ) / N ) ) ) |
19 |
18
|
fveq2d |
|- ( ( ( ph /\ M e. ( 1 ... N ) ) /\ z = ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) ) |
20 |
13
|
adantl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. NN ) |
21 |
20
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. RR ) |
22 |
|
peano2rem |
|- ( M e. RR -> ( M - 1 ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) e. RR ) |
24 |
8
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. NN ) |
25 |
23 24
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR ) |
26 |
25
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. RR* ) |
27 |
21 24
|
nndivred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR ) |
28 |
27
|
rexrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M / N ) e. RR* ) |
29 |
21
|
ltm1d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( M - 1 ) < M ) |
30 |
24
|
nnred |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> N e. RR ) |
31 |
24
|
nngt0d |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> 0 < N ) |
32 |
|
ltdiv1 |
|- ( ( ( M - 1 ) e. RR /\ M e. RR /\ ( N e. RR /\ 0 < N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
33 |
23 21 30 31 32
|
syl112anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) < M <-> ( ( M - 1 ) / N ) < ( M / N ) ) ) |
34 |
29 33
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) < ( M / N ) ) |
35 |
25 27 34
|
ltled |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) <_ ( M / N ) ) |
36 |
|
lbicc2 |
|- ( ( ( ( M - 1 ) / N ) e. RR* /\ ( M / N ) e. RR* /\ ( ( M - 1 ) / N ) <_ ( M / N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
37 |
26 28 35 36
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( M - 1 ) / N ) e. ( ( ( M - 1 ) / N ) [,] ( M / N ) ) ) |
38 |
|
fvexd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) e. _V ) |
39 |
16 19 37 38
|
fvmptd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` M ) ` ( ( M - 1 ) / N ) ) = ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) ) |
40 |
4
|
adantr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F e. ( C CovMap J ) ) |
41 |
|
simpr |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> M e. ( 1 ... N ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 41
|
cvmliftlem1 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 14
|
cvmliftlem7 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) ) |
44 |
|
cvmcn |
|- ( F e. ( C CovMap J ) -> F e. ( C Cn J ) ) |
45 |
2 3
|
cnf |
|- ( F e. ( C Cn J ) -> F : B --> X ) |
46 |
40 44 45
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> F : B --> X ) |
47 |
|
ffn |
|- ( F : B --> X -> F Fn B ) |
48 |
|
fniniseg |
|- ( F Fn B -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
49 |
46 47 48
|
3syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( M - 1 ) / N ) ) } ) <-> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) ) |
50 |
43 49
|
mpbid |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) ) |
51 |
50
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B ) |
52 |
50
|
simprd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) |
53 |
1 2 3 4 5 6 7 8 9 10 11 41 14 37
|
cvmliftlem3 |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( G ` ( ( M - 1 ) / N ) ) e. ( 1st ` ( T ` M ) ) ) |
54 |
52 53
|
eqeltrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) |
55 |
|
eqid |
|- ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) = ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) |
56 |
1 2 55
|
cvmsiota |
|- ( ( F e. ( C CovMap J ) /\ ( ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. B /\ ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) e. ( 1st ` ( T ` M ) ) ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
57 |
40 42 51 54 56
|
syl13anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ) |
58 |
57
|
simprd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) |
59 |
|
fvres |
|- ( ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) |
60 |
58 59
|
syl |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( F ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) |
61 |
60 52
|
eqtrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) ) |
62 |
57
|
simpld |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) |
63 |
1
|
cvmsf1o |
|- ( ( F e. ( C CovMap J ) /\ ( 2nd ` ( T ` M ) ) e. ( S ` ( 1st ` ( T ` M ) ) ) /\ ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) e. ( 2nd ` ( T ` M ) ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) ) |
64 |
40 42 62 63
|
syl3anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) ) |
65 |
|
f1ocnvfv |
|- ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) : ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) -1-1-onto-> ( 1st ` ( T ` M ) ) /\ ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) -> ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) |
66 |
64 58 65
|
syl2anc |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) = ( G ` ( ( M - 1 ) / N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) ) |
67 |
61 66
|
mpd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` M ) ) ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) e. b ) ) ` ( G ` ( ( M - 1 ) / N ) ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) |
68 |
39 67
|
eqtrd |
|- ( ( ph /\ M e. ( 1 ... N ) ) -> ( ( Q ` M ) ` ( ( M - 1 ) / N ) ) = ( ( Q ` ( M - 1 ) ) ` ( ( M - 1 ) / N ) ) ) |