Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
cvmliftlem.k |
|- K = U_ k e. ( 1 ... N ) ( Q ` k ) |
14 |
|
biid |
|- ( ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) |
15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cvmliftlem10 |
|- ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) |
16 |
15
|
simpld |
|- ( ph -> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) |
17 |
11
|
a1i |
|- ( ph -> L = ( topGen ` ran (,) ) ) |
18 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
19 |
8
|
nnne0d |
|- ( ph -> N =/= 0 ) |
20 |
18 19
|
dividd |
|- ( ph -> ( N / N ) = 1 ) |
21 |
20
|
oveq2d |
|- ( ph -> ( 0 [,] ( N / N ) ) = ( 0 [,] 1 ) ) |
22 |
17 21
|
oveq12d |
|- ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) |
23 |
|
dfii2 |
|- II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) |
24 |
22 23
|
eqtr4di |
|- ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = II ) |
25 |
24
|
oveq1d |
|- ( ph -> ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) = ( II Cn C ) ) |
26 |
16 25
|
eleqtrd |
|- ( ph -> K e. ( II Cn C ) ) |
27 |
15
|
simprd |
|- ( ph -> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) |
28 |
21
|
reseq2d |
|- ( ph -> ( G |` ( 0 [,] ( N / N ) ) ) = ( G |` ( 0 [,] 1 ) ) ) |
29 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
30 |
29 3
|
cnf |
|- ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) |
31 |
|
ffn |
|- ( G : ( 0 [,] 1 ) --> X -> G Fn ( 0 [,] 1 ) ) |
32 |
|
fnresdm |
|- ( G Fn ( 0 [,] 1 ) -> ( G |` ( 0 [,] 1 ) ) = G ) |
33 |
5 30 31 32
|
4syl |
|- ( ph -> ( G |` ( 0 [,] 1 ) ) = G ) |
34 |
27 28 33
|
3eqtrd |
|- ( ph -> ( F o. K ) = G ) |
35 |
26 34
|
jca |
|- ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) |