Metamath Proof Explorer


Theorem cvmliftlem11

Description: Lemma for cvmlift . (Contributed by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
cvmliftlem.b
|- B = U. C
cvmliftlem.x
|- X = U. J
cvmliftlem.f
|- ( ph -> F e. ( C CovMap J ) )
cvmliftlem.g
|- ( ph -> G e. ( II Cn J ) )
cvmliftlem.p
|- ( ph -> P e. B )
cvmliftlem.e
|- ( ph -> ( F ` P ) = ( G ` 0 ) )
cvmliftlem.n
|- ( ph -> N e. NN )
cvmliftlem.t
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
cvmliftlem.a
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
cvmliftlem.l
|- L = ( topGen ` ran (,) )
cvmliftlem.q
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) )
cvmliftlem.k
|- K = U_ k e. ( 1 ... N ) ( Q ` k )
Assertion cvmliftlem11
|- ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1
 |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
2 cvmliftlem.b
 |-  B = U. C
3 cvmliftlem.x
 |-  X = U. J
4 cvmliftlem.f
 |-  ( ph -> F e. ( C CovMap J ) )
5 cvmliftlem.g
 |-  ( ph -> G e. ( II Cn J ) )
6 cvmliftlem.p
 |-  ( ph -> P e. B )
7 cvmliftlem.e
 |-  ( ph -> ( F ` P ) = ( G ` 0 ) )
8 cvmliftlem.n
 |-  ( ph -> N e. NN )
9 cvmliftlem.t
 |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
10 cvmliftlem.a
 |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
11 cvmliftlem.l
 |-  L = ( topGen ` ran (,) )
12 cvmliftlem.q
 |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) )
13 cvmliftlem.k
 |-  K = U_ k e. ( 1 ... N ) ( Q ` k )
14 biid
 |-  ( ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cvmliftlem10
 |-  ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) )
16 15 simpld
 |-  ( ph -> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) )
17 11 a1i
 |-  ( ph -> L = ( topGen ` ran (,) ) )
18 8 nncnd
 |-  ( ph -> N e. CC )
19 8 nnne0d
 |-  ( ph -> N =/= 0 )
20 18 19 dividd
 |-  ( ph -> ( N / N ) = 1 )
21 20 oveq2d
 |-  ( ph -> ( 0 [,] ( N / N ) ) = ( 0 [,] 1 ) )
22 17 21 oveq12d
 |-  ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) )
23 dfii2
 |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) )
24 22 23 eqtr4di
 |-  ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = II )
25 24 oveq1d
 |-  ( ph -> ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) = ( II Cn C ) )
26 16 25 eleqtrd
 |-  ( ph -> K e. ( II Cn C ) )
27 15 simprd
 |-  ( ph -> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) )
28 21 reseq2d
 |-  ( ph -> ( G |` ( 0 [,] ( N / N ) ) ) = ( G |` ( 0 [,] 1 ) ) )
29 iiuni
 |-  ( 0 [,] 1 ) = U. II
30 29 3 cnf
 |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X )
31 ffn
 |-  ( G : ( 0 [,] 1 ) --> X -> G Fn ( 0 [,] 1 ) )
32 fnresdm
 |-  ( G Fn ( 0 [,] 1 ) -> ( G |` ( 0 [,] 1 ) ) = G )
33 5 30 31 32 4syl
 |-  ( ph -> ( G |` ( 0 [,] 1 ) ) = G )
34 27 28 33 3eqtrd
 |-  ( ph -> ( F o. K ) = G )
35 26 34 jca
 |-  ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) )