| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem.k |  |-  K = U_ k e. ( 1 ... N ) ( Q ` k ) | 
						
							| 14 |  | biid |  |-  ( ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) <-> ( ( n e. NN /\ ( n + 1 ) e. ( 1 ... N ) ) /\ ( U_ k e. ( 1 ... n ) ( Q ` k ) e. ( ( L |`t ( 0 [,] ( n / N ) ) ) Cn C ) /\ ( F o. U_ k e. ( 1 ... n ) ( Q ` k ) ) = ( G |` ( 0 [,] ( n / N ) ) ) ) ) ) | 
						
							| 15 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | cvmliftlem10 |  |-  ( ph -> ( K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) /\ ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> K e. ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) ) | 
						
							| 17 | 11 | a1i |  |-  ( ph -> L = ( topGen ` ran (,) ) ) | 
						
							| 18 | 8 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 19 | 8 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 20 | 18 19 | dividd |  |-  ( ph -> ( N / N ) = 1 ) | 
						
							| 21 | 20 | oveq2d |  |-  ( ph -> ( 0 [,] ( N / N ) ) = ( 0 [,] 1 ) ) | 
						
							| 22 | 17 21 | oveq12d |  |-  ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) ) | 
						
							| 23 |  | dfii2 |  |-  II = ( ( topGen ` ran (,) ) |`t ( 0 [,] 1 ) ) | 
						
							| 24 | 22 23 | eqtr4di |  |-  ( ph -> ( L |`t ( 0 [,] ( N / N ) ) ) = II ) | 
						
							| 25 | 24 | oveq1d |  |-  ( ph -> ( ( L |`t ( 0 [,] ( N / N ) ) ) Cn C ) = ( II Cn C ) ) | 
						
							| 26 | 16 25 | eleqtrd |  |-  ( ph -> K e. ( II Cn C ) ) | 
						
							| 27 | 15 | simprd |  |-  ( ph -> ( F o. K ) = ( G |` ( 0 [,] ( N / N ) ) ) ) | 
						
							| 28 | 21 | reseq2d |  |-  ( ph -> ( G |` ( 0 [,] ( N / N ) ) ) = ( G |` ( 0 [,] 1 ) ) ) | 
						
							| 29 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 30 | 29 3 | cnf |  |-  ( G e. ( II Cn J ) -> G : ( 0 [,] 1 ) --> X ) | 
						
							| 31 |  | ffn |  |-  ( G : ( 0 [,] 1 ) --> X -> G Fn ( 0 [,] 1 ) ) | 
						
							| 32 |  | fnresdm |  |-  ( G Fn ( 0 [,] 1 ) -> ( G |` ( 0 [,] 1 ) ) = G ) | 
						
							| 33 | 5 30 31 32 | 4syl |  |-  ( ph -> ( G |` ( 0 [,] 1 ) ) = G ) | 
						
							| 34 | 27 28 33 | 3eqtrd |  |-  ( ph -> ( F o. K ) = G ) | 
						
							| 35 | 26 34 | jca |  |-  ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) |