Metamath Proof Explorer


Theorem cvmliftlem13

Description: Lemma for cvmlift . The initial value of K is P because Q ( 1 ) is a subset of K which takes value P at 0 . (Contributed by Mario Carneiro, 16-Feb-2015)

Ref Expression
Hypotheses cvmliftlem.1
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
cvmliftlem.b
|- B = U. C
cvmliftlem.x
|- X = U. J
cvmliftlem.f
|- ( ph -> F e. ( C CovMap J ) )
cvmliftlem.g
|- ( ph -> G e. ( II Cn J ) )
cvmliftlem.p
|- ( ph -> P e. B )
cvmliftlem.e
|- ( ph -> ( F ` P ) = ( G ` 0 ) )
cvmliftlem.n
|- ( ph -> N e. NN )
cvmliftlem.t
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
cvmliftlem.a
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
cvmliftlem.l
|- L = ( topGen ` ran (,) )
cvmliftlem.q
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) )
cvmliftlem.k
|- K = U_ k e. ( 1 ... N ) ( Q ` k )
Assertion cvmliftlem13
|- ( ph -> ( K ` 0 ) = P )

Proof

Step Hyp Ref Expression
1 cvmliftlem.1
 |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } )
2 cvmliftlem.b
 |-  B = U. C
3 cvmliftlem.x
 |-  X = U. J
4 cvmliftlem.f
 |-  ( ph -> F e. ( C CovMap J ) )
5 cvmliftlem.g
 |-  ( ph -> G e. ( II Cn J ) )
6 cvmliftlem.p
 |-  ( ph -> P e. B )
7 cvmliftlem.e
 |-  ( ph -> ( F ` P ) = ( G ` 0 ) )
8 cvmliftlem.n
 |-  ( ph -> N e. NN )
9 cvmliftlem.t
 |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) )
10 cvmliftlem.a
 |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) )
11 cvmliftlem.l
 |-  L = ( topGen ` ran (,) )
12 cvmliftlem.q
 |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) )
13 cvmliftlem.k
 |-  K = U_ k e. ( 1 ... N ) ( Q ` k )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cvmliftlem11
 |-  ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) )
15 14 simpld
 |-  ( ph -> K e. ( II Cn C ) )
16 iiuni
 |-  ( 0 [,] 1 ) = U. II
17 16 2 cnf
 |-  ( K e. ( II Cn C ) -> K : ( 0 [,] 1 ) --> B )
18 15 17 syl
 |-  ( ph -> K : ( 0 [,] 1 ) --> B )
19 18 ffund
 |-  ( ph -> Fun K )
20 nnuz
 |-  NN = ( ZZ>= ` 1 )
21 8 20 eleqtrdi
 |-  ( ph -> N e. ( ZZ>= ` 1 ) )
22 eluzfz1
 |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) )
23 21 22 syl
 |-  ( ph -> 1 e. ( 1 ... N ) )
24 fveq2
 |-  ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) )
25 24 ssiun2s
 |-  ( 1 e. ( 1 ... N ) -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) )
26 23 25 syl
 |-  ( ph -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) )
27 26 13 sseqtrrdi
 |-  ( ph -> ( Q ` 1 ) C_ K )
28 0xr
 |-  0 e. RR*
29 28 a1i
 |-  ( ph -> 0 e. RR* )
30 8 nnrecred
 |-  ( ph -> ( 1 / N ) e. RR )
31 30 rexrd
 |-  ( ph -> ( 1 / N ) e. RR* )
32 1red
 |-  ( ph -> 1 e. RR )
33 0le1
 |-  0 <_ 1
34 33 a1i
 |-  ( ph -> 0 <_ 1 )
35 8 nnred
 |-  ( ph -> N e. RR )
36 8 nngt0d
 |-  ( ph -> 0 < N )
37 divge0
 |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( 1 / N ) )
38 32 34 35 36 37 syl22anc
 |-  ( ph -> 0 <_ ( 1 / N ) )
39 lbicc2
 |-  ( ( 0 e. RR* /\ ( 1 / N ) e. RR* /\ 0 <_ ( 1 / N ) ) -> 0 e. ( 0 [,] ( 1 / N ) ) )
40 29 31 38 39 syl3anc
 |-  ( ph -> 0 e. ( 0 [,] ( 1 / N ) ) )
41 1m1e0
 |-  ( 1 - 1 ) = 0
42 41 oveq1i
 |-  ( ( 1 - 1 ) / N ) = ( 0 / N )
43 8 nncnd
 |-  ( ph -> N e. CC )
44 8 nnne0d
 |-  ( ph -> N =/= 0 )
45 43 44 div0d
 |-  ( ph -> ( 0 / N ) = 0 )
46 42 45 syl5eq
 |-  ( ph -> ( ( 1 - 1 ) / N ) = 0 )
47 46 oveq1d
 |-  ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) )
48 40 47 eleqtrrd
 |-  ( ph -> 0 e. ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) )
49 eqid
 |-  ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) )
50 simpr
 |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) )
51 1 2 3 4 5 6 7 8 9 10 11 12 49 cvmliftlem7
 |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) )
52 1 2 3 4 5 6 7 8 9 10 11 12 49 50 51 cvmliftlem6
 |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) )
53 23 52 mpdan
 |-  ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) )
54 53 simpld
 |-  ( ph -> ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B )
55 54 fdmd
 |-  ( ph -> dom ( Q ` 1 ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) )
56 48 55 eleqtrrd
 |-  ( ph -> 0 e. dom ( Q ` 1 ) )
57 funssfv
 |-  ( ( Fun K /\ ( Q ` 1 ) C_ K /\ 0 e. dom ( Q ` 1 ) ) -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) )
58 19 27 56 57 syl3anc
 |-  ( ph -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) )
59 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem9
 |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) )
60 23 59 mpdan
 |-  ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) )
61 46 fveq2d
 |-  ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` 1 ) ` 0 ) )
62 41 fveq2i
 |-  ( Q ` ( 1 - 1 ) ) = ( Q ` 0 )
63 1 2 3 4 5 6 7 8 9 10 11 12 cvmliftlem4
 |-  ( Q ` 0 ) = { <. 0 , P >. }
64 62 63 eqtri
 |-  ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. }
65 64 a1i
 |-  ( ph -> ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. } )
66 65 46 fveq12d
 |-  ( ph -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) = ( { <. 0 , P >. } ` 0 ) )
67 60 61 66 3eqtr3d
 |-  ( ph -> ( ( Q ` 1 ) ` 0 ) = ( { <. 0 , P >. } ` 0 ) )
68 0nn0
 |-  0 e. NN0
69 fvsng
 |-  ( ( 0 e. NN0 /\ P e. B ) -> ( { <. 0 , P >. } ` 0 ) = P )
70 68 6 69 sylancr
 |-  ( ph -> ( { <. 0 , P >. } ` 0 ) = P )
71 58 67 70 3eqtrd
 |-  ( ph -> ( K ` 0 ) = P )