| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem.k |  |-  K = U_ k e. ( 1 ... N ) ( Q ` k ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem11 |  |-  ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> K e. ( II Cn C ) ) | 
						
							| 16 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 17 | 16 2 | cnf |  |-  ( K e. ( II Cn C ) -> K : ( 0 [,] 1 ) --> B ) | 
						
							| 18 | 15 17 | syl |  |-  ( ph -> K : ( 0 [,] 1 ) --> B ) | 
						
							| 19 | 18 | ffund |  |-  ( ph -> Fun K ) | 
						
							| 20 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 21 | 8 20 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` 1 ) ) | 
						
							| 22 |  | eluzfz1 |  |-  ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> 1 e. ( 1 ... N ) ) | 
						
							| 24 |  | fveq2 |  |-  ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) ) | 
						
							| 25 | 24 | ssiun2s |  |-  ( 1 e. ( 1 ... N ) -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) ) | 
						
							| 26 | 23 25 | syl |  |-  ( ph -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) ) | 
						
							| 27 | 26 13 | sseqtrrdi |  |-  ( ph -> ( Q ` 1 ) C_ K ) | 
						
							| 28 |  | 0xr |  |-  0 e. RR* | 
						
							| 29 | 28 | a1i |  |-  ( ph -> 0 e. RR* ) | 
						
							| 30 | 8 | nnrecred |  |-  ( ph -> ( 1 / N ) e. RR ) | 
						
							| 31 | 30 | rexrd |  |-  ( ph -> ( 1 / N ) e. RR* ) | 
						
							| 32 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 33 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 34 | 33 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 35 | 8 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 36 | 8 | nngt0d |  |-  ( ph -> 0 < N ) | 
						
							| 37 |  | divge0 |  |-  ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( 1 / N ) ) | 
						
							| 38 | 32 34 35 36 37 | syl22anc |  |-  ( ph -> 0 <_ ( 1 / N ) ) | 
						
							| 39 |  | lbicc2 |  |-  ( ( 0 e. RR* /\ ( 1 / N ) e. RR* /\ 0 <_ ( 1 / N ) ) -> 0 e. ( 0 [,] ( 1 / N ) ) ) | 
						
							| 40 | 29 31 38 39 | syl3anc |  |-  ( ph -> 0 e. ( 0 [,] ( 1 / N ) ) ) | 
						
							| 41 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 42 | 41 | oveq1i |  |-  ( ( 1 - 1 ) / N ) = ( 0 / N ) | 
						
							| 43 | 8 | nncnd |  |-  ( ph -> N e. CC ) | 
						
							| 44 | 8 | nnne0d |  |-  ( ph -> N =/= 0 ) | 
						
							| 45 | 43 44 | div0d |  |-  ( ph -> ( 0 / N ) = 0 ) | 
						
							| 46 | 42 45 | eqtrid |  |-  ( ph -> ( ( 1 - 1 ) / N ) = 0 ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) ) | 
						
							| 48 | 40 47 | eleqtrrd |  |-  ( ph -> 0 e. ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) | 
						
							| 49 |  | eqid |  |-  ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) | 
						
							| 50 |  | simpr |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 11 12 49 | cvmliftlem7 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 9 10 11 12 49 50 51 | cvmliftlem6 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) | 
						
							| 53 | 23 52 | mpdan |  |-  ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) | 
						
							| 54 | 53 | simpld |  |-  ( ph -> ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B ) | 
						
							| 55 | 54 | fdmd |  |-  ( ph -> dom ( Q ` 1 ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) | 
						
							| 56 | 48 55 | eleqtrrd |  |-  ( ph -> 0 e. dom ( Q ` 1 ) ) | 
						
							| 57 |  | funssfv |  |-  ( ( Fun K /\ ( Q ` 1 ) C_ K /\ 0 e. dom ( Q ` 1 ) ) -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) ) | 
						
							| 58 | 19 27 56 57 | syl3anc |  |-  ( ph -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem9 |  |-  ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) ) | 
						
							| 60 | 23 59 | mpdan |  |-  ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) ) | 
						
							| 61 | 46 | fveq2d |  |-  ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` 1 ) ` 0 ) ) | 
						
							| 62 | 41 | fveq2i |  |-  ( Q ` ( 1 - 1 ) ) = ( Q ` 0 ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem4 |  |-  ( Q ` 0 ) = { <. 0 , P >. } | 
						
							| 64 | 62 63 | eqtri |  |-  ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. } | 
						
							| 65 | 64 | a1i |  |-  ( ph -> ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. } ) | 
						
							| 66 | 65 46 | fveq12d |  |-  ( ph -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) = ( { <. 0 , P >. } ` 0 ) ) | 
						
							| 67 | 60 61 66 | 3eqtr3d |  |-  ( ph -> ( ( Q ` 1 ) ` 0 ) = ( { <. 0 , P >. } ` 0 ) ) | 
						
							| 68 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 69 |  | fvsng |  |-  ( ( 0 e. NN0 /\ P e. B ) -> ( { <. 0 , P >. } ` 0 ) = P ) | 
						
							| 70 | 68 6 69 | sylancr |  |-  ( ph -> ( { <. 0 , P >. } ` 0 ) = P ) | 
						
							| 71 | 58 67 70 | 3eqtrd |  |-  ( ph -> ( K ` 0 ) = P ) |