Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
cvmliftlem.k |
|- K = U_ k e. ( 1 ... N ) ( Q ` k ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem11 |
|- ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) |
15 |
14
|
simpld |
|- ( ph -> K e. ( II Cn C ) ) |
16 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
17 |
16 2
|
cnf |
|- ( K e. ( II Cn C ) -> K : ( 0 [,] 1 ) --> B ) |
18 |
15 17
|
syl |
|- ( ph -> K : ( 0 [,] 1 ) --> B ) |
19 |
18
|
ffund |
|- ( ph -> Fun K ) |
20 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
21 |
8 20
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` 1 ) ) |
22 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` 1 ) -> 1 e. ( 1 ... N ) ) |
23 |
21 22
|
syl |
|- ( ph -> 1 e. ( 1 ... N ) ) |
24 |
|
fveq2 |
|- ( k = 1 -> ( Q ` k ) = ( Q ` 1 ) ) |
25 |
24
|
ssiun2s |
|- ( 1 e. ( 1 ... N ) -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) ) |
26 |
23 25
|
syl |
|- ( ph -> ( Q ` 1 ) C_ U_ k e. ( 1 ... N ) ( Q ` k ) ) |
27 |
26 13
|
sseqtrrdi |
|- ( ph -> ( Q ` 1 ) C_ K ) |
28 |
|
0xr |
|- 0 e. RR* |
29 |
28
|
a1i |
|- ( ph -> 0 e. RR* ) |
30 |
8
|
nnrecred |
|- ( ph -> ( 1 / N ) e. RR ) |
31 |
30
|
rexrd |
|- ( ph -> ( 1 / N ) e. RR* ) |
32 |
|
1red |
|- ( ph -> 1 e. RR ) |
33 |
|
0le1 |
|- 0 <_ 1 |
34 |
33
|
a1i |
|- ( ph -> 0 <_ 1 ) |
35 |
8
|
nnred |
|- ( ph -> N e. RR ) |
36 |
8
|
nngt0d |
|- ( ph -> 0 < N ) |
37 |
|
divge0 |
|- ( ( ( 1 e. RR /\ 0 <_ 1 ) /\ ( N e. RR /\ 0 < N ) ) -> 0 <_ ( 1 / N ) ) |
38 |
32 34 35 36 37
|
syl22anc |
|- ( ph -> 0 <_ ( 1 / N ) ) |
39 |
|
lbicc2 |
|- ( ( 0 e. RR* /\ ( 1 / N ) e. RR* /\ 0 <_ ( 1 / N ) ) -> 0 e. ( 0 [,] ( 1 / N ) ) ) |
40 |
29 31 38 39
|
syl3anc |
|- ( ph -> 0 e. ( 0 [,] ( 1 / N ) ) ) |
41 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
42 |
41
|
oveq1i |
|- ( ( 1 - 1 ) / N ) = ( 0 / N ) |
43 |
8
|
nncnd |
|- ( ph -> N e. CC ) |
44 |
8
|
nnne0d |
|- ( ph -> N =/= 0 ) |
45 |
43 44
|
div0d |
|- ( ph -> ( 0 / N ) = 0 ) |
46 |
42 45
|
syl5eq |
|- ( ph -> ( ( 1 - 1 ) / N ) = 0 ) |
47 |
46
|
oveq1d |
|- ( ph -> ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( 0 [,] ( 1 / N ) ) ) |
48 |
40 47
|
eleqtrrd |
|- ( ph -> 0 e. ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) |
49 |
|
eqid |
|- ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) |
50 |
|
simpr |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> 1 e. ( 1 ... N ) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 49
|
cvmliftlem7 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) e. ( `' F " { ( G ` ( ( 1 - 1 ) / N ) ) } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 49 50 51
|
cvmliftlem6 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
53 |
23 52
|
mpdan |
|- ( ph -> ( ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B /\ ( F o. ( Q ` 1 ) ) = ( G |` ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) ) ) |
54 |
53
|
simpld |
|- ( ph -> ( Q ` 1 ) : ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) --> B ) |
55 |
54
|
fdmd |
|- ( ph -> dom ( Q ` 1 ) = ( ( ( 1 - 1 ) / N ) [,] ( 1 / N ) ) ) |
56 |
48 55
|
eleqtrrd |
|- ( ph -> 0 e. dom ( Q ` 1 ) ) |
57 |
|
funssfv |
|- ( ( Fun K /\ ( Q ` 1 ) C_ K /\ 0 e. dom ( Q ` 1 ) ) -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) ) |
58 |
19 27 56 57
|
syl3anc |
|- ( ph -> ( K ` 0 ) = ( ( Q ` 1 ) ` 0 ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem9 |
|- ( ( ph /\ 1 e. ( 1 ... N ) ) -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) ) |
60 |
23 59
|
mpdan |
|- ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) ) |
61 |
46
|
fveq2d |
|- ( ph -> ( ( Q ` 1 ) ` ( ( 1 - 1 ) / N ) ) = ( ( Q ` 1 ) ` 0 ) ) |
62 |
41
|
fveq2i |
|- ( Q ` ( 1 - 1 ) ) = ( Q ` 0 ) |
63 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem4 |
|- ( Q ` 0 ) = { <. 0 , P >. } |
64 |
62 63
|
eqtri |
|- ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. } |
65 |
64
|
a1i |
|- ( ph -> ( Q ` ( 1 - 1 ) ) = { <. 0 , P >. } ) |
66 |
65 46
|
fveq12d |
|- ( ph -> ( ( Q ` ( 1 - 1 ) ) ` ( ( 1 - 1 ) / N ) ) = ( { <. 0 , P >. } ` 0 ) ) |
67 |
60 61 66
|
3eqtr3d |
|- ( ph -> ( ( Q ` 1 ) ` 0 ) = ( { <. 0 , P >. } ` 0 ) ) |
68 |
|
0nn0 |
|- 0 e. NN0 |
69 |
|
fvsng |
|- ( ( 0 e. NN0 /\ P e. B ) -> ( { <. 0 , P >. } ` 0 ) = P ) |
70 |
68 6 69
|
sylancr |
|- ( ph -> ( { <. 0 , P >. } ` 0 ) = P ) |
71 |
58 67 70
|
3eqtrd |
|- ( ph -> ( K ` 0 ) = P ) |