| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 | ⊢ 𝑆  =  ( 𝑘  ∈  𝐽  ↦  { 𝑠  ∈  ( 𝒫  𝐶  ∖  { ∅ } )  ∣  ( ∪  𝑠  =  ( ◡ 𝐹  “  𝑘 )  ∧  ∀ 𝑢  ∈  𝑠 ( ∀ 𝑣  ∈  ( 𝑠  ∖  { 𝑢 } ) ( 𝑢  ∩  𝑣 )  =  ∅  ∧  ( 𝐹  ↾  𝑢 )  ∈  ( ( 𝐶  ↾t  𝑢 ) Homeo ( 𝐽  ↾t  𝑘 ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b | ⊢ 𝐵  =  ∪  𝐶 | 
						
							| 3 |  | cvmliftlem.x | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 4 |  | cvmliftlem.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐶  CovMap  𝐽 ) ) | 
						
							| 5 |  | cvmliftlem.g | ⊢ ( 𝜑  →  𝐺  ∈  ( II  Cn  𝐽 ) ) | 
						
							| 6 |  | cvmliftlem.p | ⊢ ( 𝜑  →  𝑃  ∈  𝐵 ) | 
						
							| 7 |  | cvmliftlem.e | ⊢ ( 𝜑  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 0 ) ) | 
						
							| 8 |  | cvmliftlem.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 9 |  | cvmliftlem.t | ⊢ ( 𝜑  →  𝑇 : ( 1 ... 𝑁 ) ⟶ ∪  𝑗  ∈  𝐽 ( { 𝑗 }  ×  ( 𝑆 ‘ 𝑗 ) ) ) | 
						
							| 10 |  | cvmliftlem.a | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 1 ... 𝑁 ) ( 𝐺  “  ( ( ( 𝑘  −  1 )  /  𝑁 ) [,] ( 𝑘  /  𝑁 ) ) )  ⊆  ( 1st  ‘ ( 𝑇 ‘ 𝑘 ) ) ) | 
						
							| 11 |  | cvmliftlem.l | ⊢ 𝐿  =  ( topGen ‘ ran  (,) ) | 
						
							| 12 |  | cvmliftlem.q | ⊢ 𝑄  =  seq 0 ( ( 𝑥  ∈  V ,  𝑚  ∈  ℕ  ↦  ( 𝑧  ∈  ( ( ( 𝑚  −  1 )  /  𝑁 ) [,] ( 𝑚  /  𝑁 ) )  ↦  ( ◡ ( 𝐹  ↾  ( ℩ 𝑏  ∈  ( 2nd  ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚  −  1 )  /  𝑁 ) )  ∈  𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) ,  ( (  I   ↾  ℕ )  ∪  { 〈 0 ,  { 〈 0 ,  𝑃 〉 } 〉 } ) ) | 
						
							| 13 |  | cvmliftlem.k | ⊢ 𝐾  =  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem11 | ⊢ ( 𝜑  →  ( 𝐾  ∈  ( II  Cn  𝐶 )  ∧  ( 𝐹  ∘  𝐾 )  =  𝐺 ) ) | 
						
							| 15 | 14 | simpld | ⊢ ( 𝜑  →  𝐾  ∈  ( II  Cn  𝐶 ) ) | 
						
							| 16 |  | iiuni | ⊢ ( 0 [,] 1 )  =  ∪  II | 
						
							| 17 | 16 2 | cnf | ⊢ ( 𝐾  ∈  ( II  Cn  𝐶 )  →  𝐾 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 18 | 15 17 | syl | ⊢ ( 𝜑  →  𝐾 : ( 0 [,] 1 ) ⟶ 𝐵 ) | 
						
							| 19 | 18 | ffund | ⊢ ( 𝜑  →  Fun  𝐾 ) | 
						
							| 20 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 21 | 8 20 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 22 |  | eluzfz1 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 1 )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑘  =  1  →  ( 𝑄 ‘ 𝑘 )  =  ( 𝑄 ‘ 1 ) ) | 
						
							| 25 | 24 | ssiun2s | ⊢ ( 1  ∈  ( 1 ... 𝑁 )  →  ( 𝑄 ‘ 1 )  ⊆  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 26 | 23 25 | syl | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ⊆  ∪  𝑘  ∈  ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) ) | 
						
							| 27 | 26 13 | sseqtrrdi | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 )  ⊆  𝐾 ) | 
						
							| 28 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  0  ∈  ℝ* ) | 
						
							| 30 | 8 | nnrecred | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ ) | 
						
							| 31 | 30 | rexrd | ⊢ ( 𝜑  →  ( 1  /  𝑁 )  ∈  ℝ* ) | 
						
							| 32 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 33 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  0  ≤  1 ) | 
						
							| 35 | 8 | nnred | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 36 | 8 | nngt0d | ⊢ ( 𝜑  →  0  <  𝑁 ) | 
						
							| 37 |  | divge0 | ⊢ ( ( ( 1  ∈  ℝ  ∧  0  ≤  1 )  ∧  ( 𝑁  ∈  ℝ  ∧  0  <  𝑁 ) )  →  0  ≤  ( 1  /  𝑁 ) ) | 
						
							| 38 | 32 34 35 36 37 | syl22anc | ⊢ ( 𝜑  →  0  ≤  ( 1  /  𝑁 ) ) | 
						
							| 39 |  | lbicc2 | ⊢ ( ( 0  ∈  ℝ*  ∧  ( 1  /  𝑁 )  ∈  ℝ*  ∧  0  ≤  ( 1  /  𝑁 ) )  →  0  ∈  ( 0 [,] ( 1  /  𝑁 ) ) ) | 
						
							| 40 | 29 31 38 39 | syl3anc | ⊢ ( 𝜑  →  0  ∈  ( 0 [,] ( 1  /  𝑁 ) ) ) | 
						
							| 41 |  | 1m1e0 | ⊢ ( 1  −  1 )  =  0 | 
						
							| 42 | 41 | oveq1i | ⊢ ( ( 1  −  1 )  /  𝑁 )  =  ( 0  /  𝑁 ) | 
						
							| 43 | 8 | nncnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 44 | 8 | nnne0d | ⊢ ( 𝜑  →  𝑁  ≠  0 ) | 
						
							| 45 | 43 44 | div0d | ⊢ ( 𝜑  →  ( 0  /  𝑁 )  =  0 ) | 
						
							| 46 | 42 45 | eqtrid | ⊢ ( 𝜑  →  ( ( 1  −  1 )  /  𝑁 )  =  0 ) | 
						
							| 47 | 46 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) )  =  ( 0 [,] ( 1  /  𝑁 ) ) ) | 
						
							| 48 | 40 47 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) | 
						
							| 49 |  | eqid | ⊢ ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) )  =  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) | 
						
							| 50 |  | simpr | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  1  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 51 | 1 2 3 4 5 6 7 8 9 10 11 12 49 | cvmliftlem7 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ ( 1  −  1 ) ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  ∈  ( ◡ 𝐹  “  { ( 𝐺 ‘ ( ( 1  −  1 )  /  𝑁 ) ) } ) ) | 
						
							| 52 | 1 2 3 4 5 6 7 8 9 10 11 12 49 50 51 | cvmliftlem6 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 1 ) : ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 53 | 23 52 | mpdan | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 ) : ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ⟶ 𝐵  ∧  ( 𝐹  ∘  ( 𝑄 ‘ 1 ) )  =  ( 𝐺  ↾  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) ) ) | 
						
							| 54 | 53 | simpld | ⊢ ( 𝜑  →  ( 𝑄 ‘ 1 ) : ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ⟶ 𝐵 ) | 
						
							| 55 | 54 | fdmd | ⊢ ( 𝜑  →  dom  ( 𝑄 ‘ 1 )  =  ( ( ( 1  −  1 )  /  𝑁 ) [,] ( 1  /  𝑁 ) ) ) | 
						
							| 56 | 48 55 | eleqtrrd | ⊢ ( 𝜑  →  0  ∈  dom  ( 𝑄 ‘ 1 ) ) | 
						
							| 57 |  | funssfv | ⊢ ( ( Fun  𝐾  ∧  ( 𝑄 ‘ 1 )  ⊆  𝐾  ∧  0  ∈  dom  ( 𝑄 ‘ 1 ) )  →  ( 𝐾 ‘ 0 )  =  ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) | 
						
							| 58 | 19 27 56 57 | syl3anc | ⊢ ( 𝜑  →  ( 𝐾 ‘ 0 )  =  ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) | 
						
							| 59 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem9 | ⊢ ( ( 𝜑  ∧  1  ∈  ( 1 ... 𝑁 ) )  →  ( ( 𝑄 ‘ 1 ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 1  −  1 ) ) ‘ ( ( 1  −  1 )  /  𝑁 ) ) ) | 
						
							| 60 | 23 59 | mpdan | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ ( 1  −  1 ) ) ‘ ( ( 1  −  1 )  /  𝑁 ) ) ) | 
						
							| 61 | 46 | fveq2d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  =  ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) | 
						
							| 62 | 41 | fveq2i | ⊢ ( 𝑄 ‘ ( 1  −  1 ) )  =  ( 𝑄 ‘ 0 ) | 
						
							| 63 | 1 2 3 4 5 6 7 8 9 10 11 12 | cvmliftlem4 | ⊢ ( 𝑄 ‘ 0 )  =  { 〈 0 ,  𝑃 〉 } | 
						
							| 64 | 62 63 | eqtri | ⊢ ( 𝑄 ‘ ( 1  −  1 ) )  =  { 〈 0 ,  𝑃 〉 } | 
						
							| 65 | 64 | a1i | ⊢ ( 𝜑  →  ( 𝑄 ‘ ( 1  −  1 ) )  =  { 〈 0 ,  𝑃 〉 } ) | 
						
							| 66 | 65 46 | fveq12d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ ( 1  −  1 ) ) ‘ ( ( 1  −  1 )  /  𝑁 ) )  =  ( { 〈 0 ,  𝑃 〉 } ‘ 0 ) ) | 
						
							| 67 | 60 61 66 | 3eqtr3d | ⊢ ( 𝜑  →  ( ( 𝑄 ‘ 1 ) ‘ 0 )  =  ( { 〈 0 ,  𝑃 〉 } ‘ 0 ) ) | 
						
							| 68 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 69 |  | fvsng | ⊢ ( ( 0  ∈  ℕ0  ∧  𝑃  ∈  𝐵 )  →  ( { 〈 0 ,  𝑃 〉 } ‘ 0 )  =  𝑃 ) | 
						
							| 70 | 68 6 69 | sylancr | ⊢ ( 𝜑  →  ( { 〈 0 ,  𝑃 〉 } ‘ 0 )  =  𝑃 ) | 
						
							| 71 | 58 67 70 | 3eqtrd | ⊢ ( 𝜑  →  ( 𝐾 ‘ 0 )  =  𝑃 ) |