Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
⊢ 𝑆 = ( 𝑘 ∈ 𝐽 ↦ { 𝑠 ∈ ( 𝒫 𝐶 ∖ { ∅ } ) ∣ ( ∪ 𝑠 = ( ◡ 𝐹 “ 𝑘 ) ∧ ∀ 𝑢 ∈ 𝑠 ( ∀ 𝑣 ∈ ( 𝑠 ∖ { 𝑢 } ) ( 𝑢 ∩ 𝑣 ) = ∅ ∧ ( 𝐹 ↾ 𝑢 ) ∈ ( ( 𝐶 ↾t 𝑢 ) Homeo ( 𝐽 ↾t 𝑘 ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
⊢ 𝐵 = ∪ 𝐶 |
3 |
|
cvmliftlem.x |
⊢ 𝑋 = ∪ 𝐽 |
4 |
|
cvmliftlem.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 CovMap 𝐽 ) ) |
5 |
|
cvmliftlem.g |
⊢ ( 𝜑 → 𝐺 ∈ ( II Cn 𝐽 ) ) |
6 |
|
cvmliftlem.p |
⊢ ( 𝜑 → 𝑃 ∈ 𝐵 ) |
7 |
|
cvmliftlem.e |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 0 ) ) |
8 |
|
cvmliftlem.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
9 |
|
cvmliftlem.t |
⊢ ( 𝜑 → 𝑇 : ( 1 ... 𝑁 ) ⟶ ∪ 𝑗 ∈ 𝐽 ( { 𝑗 } × ( 𝑆 ‘ 𝑗 ) ) ) |
10 |
|
cvmliftlem.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝐺 “ ( ( ( 𝑘 − 1 ) / 𝑁 ) [,] ( 𝑘 / 𝑁 ) ) ) ⊆ ( 1st ‘ ( 𝑇 ‘ 𝑘 ) ) ) |
11 |
|
cvmliftlem.l |
⊢ 𝐿 = ( topGen ‘ ran (,) ) |
12 |
|
cvmliftlem.q |
⊢ 𝑄 = seq 0 ( ( 𝑥 ∈ V , 𝑚 ∈ ℕ ↦ ( 𝑧 ∈ ( ( ( 𝑚 − 1 ) / 𝑁 ) [,] ( 𝑚 / 𝑁 ) ) ↦ ( ◡ ( 𝐹 ↾ ( ℩ 𝑏 ∈ ( 2nd ‘ ( 𝑇 ‘ 𝑚 ) ) ( 𝑥 ‘ ( ( 𝑚 − 1 ) / 𝑁 ) ) ∈ 𝑏 ) ) ‘ ( 𝐺 ‘ 𝑧 ) ) ) ) , ( ( I ↾ ℕ ) ∪ { 〈 0 , { 〈 0 , 𝑃 〉 } 〉 } ) ) |
13 |
|
cvmliftlem.k |
⊢ 𝐾 = ∪ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem11 |
⊢ ( 𝜑 → ( 𝐾 ∈ ( II Cn 𝐶 ) ∧ ( 𝐹 ∘ 𝐾 ) = 𝐺 ) ) |
15 |
14
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ ( II Cn 𝐶 ) ) |
16 |
|
iiuni |
⊢ ( 0 [,] 1 ) = ∪ II |
17 |
16 2
|
cnf |
⊢ ( 𝐾 ∈ ( II Cn 𝐶 ) → 𝐾 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
18 |
15 17
|
syl |
⊢ ( 𝜑 → 𝐾 : ( 0 [,] 1 ) ⟶ 𝐵 ) |
19 |
18
|
ffund |
⊢ ( 𝜑 → Fun 𝐾 ) |
20 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
21 |
8 20
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
22 |
|
eluzfz1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → 1 ∈ ( 1 ... 𝑁 ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → 1 ∈ ( 1 ... 𝑁 ) ) |
24 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( 𝑄 ‘ 𝑘 ) = ( 𝑄 ‘ 1 ) ) |
25 |
24
|
ssiun2s |
⊢ ( 1 ∈ ( 1 ... 𝑁 ) → ( 𝑄 ‘ 1 ) ⊆ ∪ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) ) |
26 |
23 25
|
syl |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ⊆ ∪ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑄 ‘ 𝑘 ) ) |
27 |
26 13
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) ⊆ 𝐾 ) |
28 |
|
0xr |
⊢ 0 ∈ ℝ* |
29 |
28
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℝ* ) |
30 |
8
|
nnrecred |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ ) |
31 |
30
|
rexrd |
⊢ ( 𝜑 → ( 1 / 𝑁 ) ∈ ℝ* ) |
32 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
33 |
|
0le1 |
⊢ 0 ≤ 1 |
34 |
33
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
35 |
8
|
nnred |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
36 |
8
|
nngt0d |
⊢ ( 𝜑 → 0 < 𝑁 ) |
37 |
|
divge0 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ∧ ( 𝑁 ∈ ℝ ∧ 0 < 𝑁 ) ) → 0 ≤ ( 1 / 𝑁 ) ) |
38 |
32 34 35 36 37
|
syl22anc |
⊢ ( 𝜑 → 0 ≤ ( 1 / 𝑁 ) ) |
39 |
|
lbicc2 |
⊢ ( ( 0 ∈ ℝ* ∧ ( 1 / 𝑁 ) ∈ ℝ* ∧ 0 ≤ ( 1 / 𝑁 ) ) → 0 ∈ ( 0 [,] ( 1 / 𝑁 ) ) ) |
40 |
29 31 38 39
|
syl3anc |
⊢ ( 𝜑 → 0 ∈ ( 0 [,] ( 1 / 𝑁 ) ) ) |
41 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
42 |
41
|
oveq1i |
⊢ ( ( 1 − 1 ) / 𝑁 ) = ( 0 / 𝑁 ) |
43 |
8
|
nncnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
44 |
8
|
nnne0d |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
45 |
43 44
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑁 ) = 0 ) |
46 |
42 45
|
syl5eq |
⊢ ( 𝜑 → ( ( 1 − 1 ) / 𝑁 ) = 0 ) |
47 |
46
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) = ( 0 [,] ( 1 / 𝑁 ) ) ) |
48 |
40 47
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ) |
49 |
|
eqid |
⊢ ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) = ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) |
50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑁 ) ) → 1 ∈ ( 1 ... 𝑁 ) ) |
51 |
1 2 3 4 5 6 7 8 9 10 11 12 49
|
cvmliftlem7 |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ ( 1 − 1 ) ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) ∈ ( ◡ 𝐹 “ { ( 𝐺 ‘ ( ( 1 − 1 ) / 𝑁 ) ) } ) ) |
52 |
1 2 3 4 5 6 7 8 9 10 11 12 49 50 51
|
cvmliftlem6 |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ 1 ) : ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ⟶ 𝐵 ∧ ( 𝐹 ∘ ( 𝑄 ‘ 1 ) ) = ( 𝐺 ↾ ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ) ) ) |
53 |
23 52
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) : ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ⟶ 𝐵 ∧ ( 𝐹 ∘ ( 𝑄 ‘ 1 ) ) = ( 𝐺 ↾ ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ) ) ) |
54 |
53
|
simpld |
⊢ ( 𝜑 → ( 𝑄 ‘ 1 ) : ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ⟶ 𝐵 ) |
55 |
54
|
fdmd |
⊢ ( 𝜑 → dom ( 𝑄 ‘ 1 ) = ( ( ( 1 − 1 ) / 𝑁 ) [,] ( 1 / 𝑁 ) ) ) |
56 |
48 55
|
eleqtrrd |
⊢ ( 𝜑 → 0 ∈ dom ( 𝑄 ‘ 1 ) ) |
57 |
|
funssfv |
⊢ ( ( Fun 𝐾 ∧ ( 𝑄 ‘ 1 ) ⊆ 𝐾 ∧ 0 ∈ dom ( 𝑄 ‘ 1 ) ) → ( 𝐾 ‘ 0 ) = ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) |
58 |
19 27 56 57
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ‘ 0 ) = ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem9 |
⊢ ( ( 𝜑 ∧ 1 ∈ ( 1 ... 𝑁 ) ) → ( ( 𝑄 ‘ 1 ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ ( 1 − 1 ) ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) ) |
60 |
23 59
|
mpdan |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ ( 1 − 1 ) ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) ) |
61 |
46
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) = ( ( 𝑄 ‘ 1 ) ‘ 0 ) ) |
62 |
41
|
fveq2i |
⊢ ( 𝑄 ‘ ( 1 − 1 ) ) = ( 𝑄 ‘ 0 ) |
63 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cvmliftlem4 |
⊢ ( 𝑄 ‘ 0 ) = { 〈 0 , 𝑃 〉 } |
64 |
62 63
|
eqtri |
⊢ ( 𝑄 ‘ ( 1 − 1 ) ) = { 〈 0 , 𝑃 〉 } |
65 |
64
|
a1i |
⊢ ( 𝜑 → ( 𝑄 ‘ ( 1 − 1 ) ) = { 〈 0 , 𝑃 〉 } ) |
66 |
65 46
|
fveq12d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ ( 1 − 1 ) ) ‘ ( ( 1 − 1 ) / 𝑁 ) ) = ( { 〈 0 , 𝑃 〉 } ‘ 0 ) ) |
67 |
60 61 66
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 1 ) ‘ 0 ) = ( { 〈 0 , 𝑃 〉 } ‘ 0 ) ) |
68 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
69 |
|
fvsng |
⊢ ( ( 0 ∈ ℕ0 ∧ 𝑃 ∈ 𝐵 ) → ( { 〈 0 , 𝑃 〉 } ‘ 0 ) = 𝑃 ) |
70 |
68 6 69
|
sylancr |
⊢ ( 𝜑 → ( { 〈 0 , 𝑃 〉 } ‘ 0 ) = 𝑃 ) |
71 |
58 67 70
|
3eqtrd |
⊢ ( 𝜑 → ( 𝐾 ‘ 0 ) = 𝑃 ) |