| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cvmliftlem.1 |  |-  S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) | 
						
							| 2 |  | cvmliftlem.b |  |-  B = U. C | 
						
							| 3 |  | cvmliftlem.x |  |-  X = U. J | 
						
							| 4 |  | cvmliftlem.f |  |-  ( ph -> F e. ( C CovMap J ) ) | 
						
							| 5 |  | cvmliftlem.g |  |-  ( ph -> G e. ( II Cn J ) ) | 
						
							| 6 |  | cvmliftlem.p |  |-  ( ph -> P e. B ) | 
						
							| 7 |  | cvmliftlem.e |  |-  ( ph -> ( F ` P ) = ( G ` 0 ) ) | 
						
							| 8 |  | cvmliftlem.n |  |-  ( ph -> N e. NN ) | 
						
							| 9 |  | cvmliftlem.t |  |-  ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) | 
						
							| 10 |  | cvmliftlem.a |  |-  ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) | 
						
							| 11 |  | cvmliftlem.l |  |-  L = ( topGen ` ran (,) ) | 
						
							| 12 |  | cvmliftlem.q |  |-  Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) | 
						
							| 13 |  | cvmliftlem.k |  |-  K = U_ k e. ( 1 ... N ) ( Q ` k ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem11 |  |-  ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) | 
						
							| 15 | 14 | simpld |  |-  ( ph -> K e. ( II Cn C ) ) | 
						
							| 16 | 14 | simprd |  |-  ( ph -> ( F o. K ) = G ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | cvmliftlem13 |  |-  ( ph -> ( K ` 0 ) = P ) | 
						
							| 18 |  | coeq2 |  |-  ( f = K -> ( F o. f ) = ( F o. K ) ) | 
						
							| 19 | 18 | eqeq1d |  |-  ( f = K -> ( ( F o. f ) = G <-> ( F o. K ) = G ) ) | 
						
							| 20 |  | fveq1 |  |-  ( f = K -> ( f ` 0 ) = ( K ` 0 ) ) | 
						
							| 21 | 20 | eqeq1d |  |-  ( f = K -> ( ( f ` 0 ) = P <-> ( K ` 0 ) = P ) ) | 
						
							| 22 | 19 21 | anbi12d |  |-  ( f = K -> ( ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( ( F o. K ) = G /\ ( K ` 0 ) = P ) ) ) | 
						
							| 23 | 22 | rspcev |  |-  ( ( K e. ( II Cn C ) /\ ( ( F o. K ) = G /\ ( K ` 0 ) = P ) ) -> E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 24 | 15 16 17 23 | syl12anc |  |-  ( ph -> E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 25 |  | iiuni |  |-  ( 0 [,] 1 ) = U. II | 
						
							| 26 |  | iiconn |  |-  II e. Conn | 
						
							| 27 | 26 | a1i |  |-  ( ph -> II e. Conn ) | 
						
							| 28 |  | iinllyconn |  |-  II e. N-Locally Conn | 
						
							| 29 | 28 | a1i |  |-  ( ph -> II e. N-Locally Conn ) | 
						
							| 30 |  | 0elunit |  |-  0 e. ( 0 [,] 1 ) | 
						
							| 31 | 30 | a1i |  |-  ( ph -> 0 e. ( 0 [,] 1 ) ) | 
						
							| 32 | 2 25 4 27 29 31 5 6 7 | cvmliftmo |  |-  ( ph -> E* f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) | 
						
							| 33 |  | reu5 |  |-  ( E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) /\ E* f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) | 
						
							| 34 | 24 32 33 | sylanbrc |  |-  ( ph -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |