Step |
Hyp |
Ref |
Expression |
1 |
|
cvmliftlem.1 |
|- S = ( k e. J |-> { s e. ( ~P C \ { (/) } ) | ( U. s = ( `' F " k ) /\ A. u e. s ( A. v e. ( s \ { u } ) ( u i^i v ) = (/) /\ ( F |` u ) e. ( ( C |`t u ) Homeo ( J |`t k ) ) ) ) } ) |
2 |
|
cvmliftlem.b |
|- B = U. C |
3 |
|
cvmliftlem.x |
|- X = U. J |
4 |
|
cvmliftlem.f |
|- ( ph -> F e. ( C CovMap J ) ) |
5 |
|
cvmliftlem.g |
|- ( ph -> G e. ( II Cn J ) ) |
6 |
|
cvmliftlem.p |
|- ( ph -> P e. B ) |
7 |
|
cvmliftlem.e |
|- ( ph -> ( F ` P ) = ( G ` 0 ) ) |
8 |
|
cvmliftlem.n |
|- ( ph -> N e. NN ) |
9 |
|
cvmliftlem.t |
|- ( ph -> T : ( 1 ... N ) --> U_ j e. J ( { j } X. ( S ` j ) ) ) |
10 |
|
cvmliftlem.a |
|- ( ph -> A. k e. ( 1 ... N ) ( G " ( ( ( k - 1 ) / N ) [,] ( k / N ) ) ) C_ ( 1st ` ( T ` k ) ) ) |
11 |
|
cvmliftlem.l |
|- L = ( topGen ` ran (,) ) |
12 |
|
cvmliftlem.q |
|- Q = seq 0 ( ( x e. _V , m e. NN |-> ( z e. ( ( ( m - 1 ) / N ) [,] ( m / N ) ) |-> ( `' ( F |` ( iota_ b e. ( 2nd ` ( T ` m ) ) ( x ` ( ( m - 1 ) / N ) ) e. b ) ) ` ( G ` z ) ) ) ) , ( ( _I |` NN ) u. { <. 0 , { <. 0 , P >. } >. } ) ) |
13 |
|
cvmliftlem.k |
|- K = U_ k e. ( 1 ... N ) ( Q ` k ) |
14 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem11 |
|- ( ph -> ( K e. ( II Cn C ) /\ ( F o. K ) = G ) ) |
15 |
14
|
simpld |
|- ( ph -> K e. ( II Cn C ) ) |
16 |
14
|
simprd |
|- ( ph -> ( F o. K ) = G ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
cvmliftlem13 |
|- ( ph -> ( K ` 0 ) = P ) |
18 |
|
coeq2 |
|- ( f = K -> ( F o. f ) = ( F o. K ) ) |
19 |
18
|
eqeq1d |
|- ( f = K -> ( ( F o. f ) = G <-> ( F o. K ) = G ) ) |
20 |
|
fveq1 |
|- ( f = K -> ( f ` 0 ) = ( K ` 0 ) ) |
21 |
20
|
eqeq1d |
|- ( f = K -> ( ( f ` 0 ) = P <-> ( K ` 0 ) = P ) ) |
22 |
19 21
|
anbi12d |
|- ( f = K -> ( ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( ( F o. K ) = G /\ ( K ` 0 ) = P ) ) ) |
23 |
22
|
rspcev |
|- ( ( K e. ( II Cn C ) /\ ( ( F o. K ) = G /\ ( K ` 0 ) = P ) ) -> E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |
24 |
15 16 17 23
|
syl12anc |
|- ( ph -> E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |
25 |
|
iiuni |
|- ( 0 [,] 1 ) = U. II |
26 |
|
iiconn |
|- II e. Conn |
27 |
26
|
a1i |
|- ( ph -> II e. Conn ) |
28 |
|
iinllyconn |
|- II e. N-Locally Conn |
29 |
28
|
a1i |
|- ( ph -> II e. N-Locally Conn ) |
30 |
|
0elunit |
|- 0 e. ( 0 [,] 1 ) |
31 |
30
|
a1i |
|- ( ph -> 0 e. ( 0 [,] 1 ) ) |
32 |
2 25 4 27 29 31 5 6 7
|
cvmliftmo |
|- ( ph -> E* f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |
33 |
|
reu5 |
|- ( E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) <-> ( E. f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) /\ E* f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) ) |
34 |
24 32 33
|
sylanbrc |
|- ( ph -> E! f e. ( II Cn C ) ( ( F o. f ) = G /\ ( f ` 0 ) = P ) ) |